
Nature Geoscience | Volume 17 | August 2024 | 719–732 719

nature geoscience

https://doi.org/10.1038/s41561-024-01482-6Review article

Multifaceted aerosol effects on precipitation
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Aerosols have been proposed to influence precipitation rates and spatial 
patterns from scales of individual clouds to the globe. However, large 
uncertainty remains regarding the underlying mechanisms and importance 
of multiple effects across spatial and temporal scales. Here we review the 
evidence and scientific consensus behind these effects, categorized into 
radiative effects via modification of radiative fluxes and the energy balance, 
and microphysical effects via modification of cloud droplets and ice crystals. 
Broad consensus and strong theoretical evidence exist that aerosol radiative 
effects (aerosol–radiation interactions and aerosol–cloud interactions) 
act as drivers of precipitation changes because global mean precipitation 
is constrained by energetics and surface evaporation. Likewise, aerosol 
radiative effects cause well-documented shifts of large-scale precipitation 
patterns, such as the intertropical convergence zone. The extent of aerosol 
effects on precipitation at smaller scales is less clear. Although there is broad 
consensus and strong evidence that aerosol perturbations microphysically 
increase cloud droplet numbers and decrease droplet sizes, thereby slowing 
precipitation droplet formation, the overall aerosol effect on precipitation 
across scales remains highly uncertain. Global cloud-resolving models 
provide opportunities to investigate mechanisms that are currently not well 
represented in global climate models and to robustly connect local effects 
with larger scales. This will increase our confidence in predicted impacts of 
climate change.

Less than 3% of water on Earth sustains life. Precipitation is the most 
important mechanism delivering fresh water from the atmosphere 
to the surface. Although climate change discussions are commonly 
framed in terms of global temperature change, precipitation changes 
drive actual impacts of climate change on the planet1,2.

A substantial body of literature exists describing the impact 
of greenhouse gas- (GHG-) induced warming on precipitation, and 
the concepts are well understood2,3. By contrast, the uncertainty 

regarding aerosol (nano- to micrometre-sized particles suspended 
in air of anthropogenic or natural origin) effects on precipitation 
(APEs) remains large. Many hypotheses describe APEs on the basis of 
radiative and cloud microphysical arguments. Some are included in 
current climate models; others are not (compare Fig. 1 and Table 1). 
Large uncertainty remains regarding the underlying mechanisms 
and relative importance of proposed effects across spatial and tem-
poral scales.
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LdP = dQ + d (∇ • us) (1)

Conservation of water provides additional constraints. In the 
global mean and for sufficiently long time scales, precipitation P must 
be balanced by evaporation E so P – E = 0. On smaller spatial scales, 
moisture (qv) flux convergence can compensate for imbalances in 
P – E so that:

dP − dE = −d (∇ • uqv) (2)

This implies the existence of breakdown scales of budgetary  
constraints on precipitation—a scale below which energy and water 
budget constraints on precipitation do not strictly apply due to effi-
cient horizontal transport11. In the extra-tropics, this scale is expected 
to be related to the first baroclinic Rossby radius of deformation 
(L = NH

πf0
≈1,000km, where N is the Brunt–Väisälä frequency, H is the scale 

height and f0 is the Coriolis parameter). This latitudinally dependent 
precipitation constraint on aerosol perturbations implies varying 
effects in the tropics and extra-tropics (Fig. 3). Even for regional aerosol 
perturbations, energetic constraints apply to the global mean. Reduc-
tions in surface insolation and atmospheric heating by aerosol absorp-
tion decrease global mean precipitation in both simulations, with 
teleconnections in the tropical simulation.

Evidence from climate models shows that localized aerosol 
absorption could affect tropical precipitation over thousands of kilo-
metres12. Similar scale arguments apply to the moisture budget, with 
limitations on moisture convergence constraining the susceptibil-
ity of regional APEs13. The combination of energy and water budget 
constraints (smallest closure scale) yields a characteristic scale for 
regional precipitation responses11 of 3,000 km to localized aerosol 
perturbations, similar to scales of weather systems14.

This Review Article builds on the results of an expert workshop 
held under the auspices of the Global Energy and Water Cycle Exchanges 
(GEWEX) Aerosol Precipitation (GAP) initiative4. It critically reviews the 
current evidence and scientific consensus (in the authors’ view) for 
APEs and their proposed mechanisms. To facilitate this assessment, 
we categorize mechanisms according to their degree of scientific sup-
port: category A, strong evidence/broad consensus; category B, some 
evidence/limited consensus; category C, hypothesized/no consensus.

The physical mechanisms of aerosol effects on 
precipitation
The physical drivers of APEs can be categorized into (1) radiative effects 
via modification of radiative fluxes and the energy balance, which 
occur due to aerosol scattering and absorption, and (2) modification 
of cloud radiative properties by microphysical effects via modification 
of cloud droplet and ice crystal number, size and morphology, which 
can affect growth to precipitation-size particles, as well as latent heat 
from phase changes (enthalpy of vaporization or fusion). All these 
effects can induce dynamical feedbacks across scales.

In addition to this mechanistic (bottom up) view, conservation 
laws provide a complementary (top down) perspective: conservation 
of energy constrains global mean precipitation5–7 as changes in latent 
heat of condensation (L) associated with precipitation changes (dP) 
have to be compensated by opposite changes in net column-integrated 
cooling (dQ) through adjustment of net surface sensible heat (dFSH) 
and radiative (dF SURRAD) fluxes or top-of-atmosphere radiative fluxes 
(dFTOARAD), and vice versa. At smaller spatial scales, net latent heating 
associated with precipitation changes can also be balanced through 
divergence of dry static energy5,8–10 (d (∇ • us))  (column integrated, 
with u horizontal velocity, neglecting changes in energy and liquid or 
solid water storage and kinetic energy transport), as illustrated in Fig. 2:
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Fig. 1 | Precipitation change due to anthropogenic aerosol in current 
climate models. a–d, Climate model-simulated relative (a) and absolute (c) 
precipitation changes (%) due to anthropogenic aerosol from the Coupled 
Model Intercomparison Project Phase 6 (CMIP6) Detection and Attribution 
Model Intercomparison Project (DAMIP)203 (difference between last 30 years 

of present-day hist-aer minus pre-industrial picontrol control simulations) and 
the corresponding multimodel standard deviations (b,d), respectively. Note 
the substantial differences between relative (a) and absolute (c) precipitation 
changes, highlighted in the boxes over northern Africa and the Middle East.
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It is important to note that this budgetary framework does not 
provide direct constraints on precipitation intensity distributions, 
despite constraints on its mean. APEs could invoke an additional feed-
back mechanism through the radiative effects of atmospheric humidity 
and clouds15. Combined, energy and moisture budget constraints can 
provide physical mechanisms underpinning the ‘buffering’ of APEs16 in 
equilibrium conditions, which is also related to radiative–convective 
equilibrium concepts17–19.

APEs can be decomposed into adjustments due to instantaneous 
atmospheric net diabatic heating, including rapid adjustments of the ver-
tical structure of water vapour, temperature and clouds (hours to days), 
and a slower response mediated by surface temperature changes6,20,21 
defined as ‘hydrological sensitivity’9,22. Due to difficulties in separating 
fast surface temperature changes (days to months) from rapid adjust-
ments in climate models, these are commonly considered jointly20,21.

Finally, both radiative and microphysical effects and associ-
ated changes to the regional energy balance can lead to dynamical 
effects and regional circulation changes with concomitant changes 
in precipitation23,24.

We now discuss each potential mechanism underlying APEs and 
assess their evidence and scientific consensus.

Radiative effects
Surface energy budget
Aerosol–radiation interactions (ARIs) and aerosol–cloud interac-
tions modulate radiative surface fluxes and, consequently, sensible 
and latent heat fluxes. These effects generally reduce surface insola-
tion, decreasing surface evaporation, which has been linked to a ‘spin 
down’ of the hydrological cycle25. This is corroborated by the observed 
precipitation response to ARIs following major volcanic eruptions, 
showing substantial decreases in precipitation over land and river 
discharge into ocean26,27. (Near-surface absorbing aerosol can enhance 
precipitation through diabatic heating, even when surface sensible 
heat fluxes are reduced28.) Energetically, the net-negative total ARIs29 
reduce the global mean temperature, atmospheric water vapour and 
associated long-wave emissions, which is compensated by reductions 
in precipitation and associated latent heat: climate models show that 
negative aerosol radiative forcing masks almost all temperature-driven 
GHG effects on precipitation over land up to present (with GHG effects 
dominating the future)9,30,31. However, such radiative arguments cannot 
be decoupled from dynamical feedbacks, as shown in the following.

That ARIs reduce global precipitation through changes in surface 
temperature and surface fluxes builds on our physical understanding 
of the energy budget, is supported by observational evidence32 and 

is reproduced by climate models. We assess this effect as category A, 
supported by strong evidence and broad scientific consensus, although 
magnitudinal uncertainties remain.

The following two mechanisms could be combined as aerosol 
absorption effects, but we retain the mechanistic separation prevailing 
in existing literature.

Atmospheric diabatic heating
Atmospheric diabatic heating by aerosol absorption creates local 
energetic imbalances. To ensure energy conservation, this is com-
pensated by reductions in latent heat release through precipitation, 
by rapid adjustments of net surface or top-of-atmosphere fluxes or, 
on smaller scales or in the tropics11,33, through divergence of dry static 
energy8,34. The energetic framework provides a useful tool to diagnose 
APEs9,21,28,34,35 and can explain the contrasting behaviours of absorbing 
and non-absorbing aerosols21,36.

That diabatic heating of absorbing aerosol reduces global mean 
precipitation is consistent with our physical understanding of the 
energy budget, is reproduced by climate models but builds on limited 
observational evidence. We therefore assess this effect as category A, 
supported by strong evidence and broad scientific consensus but with 
remaining magnitudinal uncertainties.

Semi-direct effects
Semi-direct effects9,37–40 are rapid adjustments associated with aerosol 
absorption affecting the vertical temperature and humidity struc-
ture, with potential effects on clouds and precipitation. These effects 
are generally accompanied by corresponding surface flux changes 
(compare Atmospheric diabatic heating). Elevated layers of absorbing 
aerosol can modify lower-tropospheric static stability and sub-tropical 
inversion strength39,41, suppressing boundary layer deepening and 
concomitant entrainment42. Although the focus has been on shallow 
clouds43, the impact on deep convection and associated precipitation 
has been demonstrated in cloud-resolving models (CRMs), revealing 
a complex diurnal cycle44, and climate models28. However, most previ-
ous research focused on semi-direct effects of shallow clouds in the 
context of radiative forcing43, not precipitation. Hence, the overall 
uncertainty remains large.

Semi-direct effects of absorbing aerosol on the thermodynamic 
structure of the atmosphere are based on a sound physical foundation 
and have been well documented. However, the sign and magnitude 
of the effect on clouds and subsequently precipitation are sensitive 
to the vertical collocation of clouds and aerosols as well as the cloud 
regime. Some consistency exists across CRM studies; however, the 

Table 1 | Assessment of the effect of increasing aerosol on precipitation

Physical driver of aerosol effect on 
precipitation

Pathway Expected effect on 
mean

Expected effect on 
intensity distribution

Included in CMIP6 
climate models?

Scientific 
consensus category

Surface energy budget Radiative Decrease Uncertain Yes A

Atmospheric diabatic heating Radiative Decrease Uncertain Yes A

Semi-direct effects Radiative Uncertain Uncertain Yes B

Regional-scale and monsoon dynamics Radiative Regional shifts Uncertain Yes B

Sea surface temperature patterns Radiative Regional shifts Uncertain Yes B

Hemispheric asymmetry Radiative Regional shifts Neutral Yes A

CCN-mediated effects on stratiform 
liquid clouds

Microphysical Neutral Uncertain Yes (substantial 
uncertainties)

B

CCN-mediated effects on shallow 
convection

Microphysical Uncertain Broaden No B

CCN-mediated effects on deep 
convection

Microphysical Uncertain Broaden No C

INP-mediated effects Microphysical Uncertain Uncertain No (in most models) C
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observational evidence remains limited. We therefore assess this effect 
as category B, backed by physical conceptual models, modelling studies 
and limited observational evidence and some scientific consensus, even 
if the magnitude and sign of the impact on precipitation remain unclear.

The following three mechanisms could be combined as aerosol 
effects on regional precipitation patterns, but we retain the mecha-
nistic separation prevailing in existing literature.

Regional-scale and monsoon dynamics
Changes in regional-scale precipitation and monsoon dynamics have 
been attributed to regional patterns in ARI-induced surface cooling and 
atmospheric heating, both locally and remotely12,34,45–49. The precipita-
tion response can be attributed to a combination of the modulation of 
surface fluxes over land, hence of the thermal gradient between land 

and sea50,51, as well as aerosol absorption effects, driving thermally 
direct circulations12,52 and moisture convergence52 (linked to extreme 
precipitation53,54), the sea breeze circulation55 and teleconnections56.

Aerosol effects on regional-scale precipitation and monsoon 
dynamics have been shown to affect precipitation patterns. This builds 
on climate model and CRM simulations and general physical under-
standing, with some observational evidence. However, uncertainties 
remain regarding the attribution of observed precipitation to aerosol 
effects and overall strength of the effects. We therefore assess this effect 
as category B, backed by some evidence and limited scientific consensus.

Sea surface temperature patterns
Aerosol radiative effects on sea surface temperature (SST) patterns 
have been linked to observed climatological trends57,58. Associated 
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Fig. 3 | Precipitation changes to idealized absorbing aerosol perturbations. 
Idealized aqua-planet icosahedral non-hydrostatic (ICON)204 general circulation 
model simulations of changes of precipitation and the atmospheric energy 
balance in response to idealized circular absorbing aerosol radiative plumes (of 
10° size and identical aerosol radiative properties with peak aerosol optical depth 

of 2.4 and single scattering albedo of 0.8)33. Top row: plume located on the 
Equator. Bottom row: plume located at 40° N. dQR, atmospheric radiative 
cooling; LdP, latent heat associated with precipitation change dP ; dFSH, sensible 
surface heat flux; d(∇ • us), divergence of dry static energy.
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Fig. 2 | Physical mechanisms of aerosols effects on precipitation. Mechanisms 
of aerosol effects on precipitation and their constraints from an energy (red) 
and water (blue) budget perspective. Radiative and microphysical effects are 
mediated by variations in aerosol optical depth (AOD), aerosol absorption 
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changes in multi-decadal SST variability59 have previously been linked 
to the Sahel drought60–63. In addition to the local effects on the SST 
distribution, aerosols may affect ocean dynamics and thereby SSTs. 
For example, aerosol forcing was shown to strengthen the Atlantic 
meridional overturning circulation, thereby modulating SST patterns in 
the Atlantic Ocean64–67 and affecting the Northern Hemisphere climate 
and precipitation patterns63,68. SSTs also control hurricane activity61,69–71, 
providing a mechanism for potential aerosol effects on hurricanes72,73. 
Forcing trends associated with European sulfur emissions as aerosol 
precursor have been linked to a pronounced North Atlantic ‘hurricane 
drought’ from the 1960s to the early 1990s74, during which hurricane 
power dissipation, a measure of storm damage75, was strongly inversely 
correlated with European sulfur emissions. Much of the direct SST 
forcing was from Saharan mineral dust, which in turn was associated 
with reduced monsoonal flow resulting from high sulfate aerosol con-
centrations76.

The SST-mediated effect of aerosol on regional precipitation pat-
terns and hurricane activity builds on climate model simulations and 
general physical understanding, with limited observational evidence. 
We therefore assess this effect as category B, backed up by some evi-
dence and limited scientific consensus.

Hemispheric asymmetry
Hemispheric asymmetry in aerosol radiative effects77 shifts the energy 
flux equator to where the column-integrated meridional energy flux 
vanishes78,79. The position of the energy flux equator is closely linked to 

the intertropical convergence zone (ITCZ) position and associated pre-
cipitation. With anthropogenic aerosol located predominantly in the 
Northern Hemisphere, associated negative/positive aerosol radiative 
effects (for example, from sulfate/black carbon) lead to a southward/
northward ITCZ shift62,78–87. For sulfate, this is a slow (SST-mediated) 
response, whereas for black carbon atmospheric adjustments to 
absorption contribute the response88. Dynamical cloud feedbacks 
can further amplify the hemispheric asymmetry89, and ITCZ shifts can 
interact with local monsoon regimes90.

The effect of hemispherically asymmetric aerosol radiative effects 
on the energy flux equator and ITCZ position builds on a robust theo-
retical foundation79, agrees with observational evidence83,91 and is 
reliably reproduced by global climate models (GCMs). We therefore 
assess this effect as category A, backed by strong evidence and broad 
scientific consensus.

Microphysical effects
CCN-mediated effects on stratiform liquid clouds
Cloud condensation nuclei (CCN) mediate effects on stratiform liquid 
clouds, including stratocumulus. Enhanced loading of CCN (hygro-
scopic or wettable aerosols of sufficient size to facilitate droplet 
growth) can increase cloud droplet numbers and, at constant liquid 
water content, lead to smaller droplets. This effect saturates for high 
aerosol concentrations92 and/or low updraft velocities due to the deple-
tion of supersaturation by condensation. This pathway can slow droplet 
growth to the threshold size for precipitation93–96, thereby supressing 

RAMS
Low CCN

RAMS
High CCN

WRF-Morr
Low CCN

WRF-Morr
High CCN

Meso-NH
Low CCN

Meso-NH
High CCN

UM
Low CCN

UM
High CCN

NU-WRF
Low CCN

NU-WRF
High CCN

8.1% 6.0% 23.4% 27.5% 2.3% 1.8% 2.7% 4.6% 10.3% 16.7%

28.6% 21.1% 25.3% 26.4% 9.0% 7.2% 17.7% 14.8% 21.6% 22.9%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

100.0% 89.1% 78.3% 85.6% 100.0% 86.0% 99.0% 100.0% 60.3% 68.5%

57.0% 60.2% 90.4% 100.0% 45.1% 42.1% 88.8% 77.0% 100.0% 97.4%

9.6% 4.6% 14.1% 12.8% 2.0% 1.1% 10.2% 5.7% 16.4% 13.6%

Condensation Deposition Freezing Evaporation Sublimation Melting

1 km

1 km3 km

5 km

7 km

9 km

11 km

Melting
level

Homogeneous
freezing
level

Fig. 4 | Simulated aerosol effects on deep convection. Cloud-resolving model 
intercomparison of CCN-mediated effects on deep convection from the Aerosol, 
Cloud, Precipitation and Climate deep convection study153: fractional mass 
process rates (%) for tracked deep convective systems for low- and high-CCN 
conditions as a function of height. Results for each model, named in the top row, 

are shown for low- and high-CCN conditions in individual columns. The sizes 
of the pies are scaled logarithmically by the largest mass production rate of the 
model. Substantial differences in the model base state and the response to cloud 
condensation nuclei perturbations illustrate associated large uncertainties.

http://www.nature.com/naturegeoscience


Nature Geoscience | Volume 17 | August 2024 | 719–732 724

Review article https://doi.org/10.1038/s41561-024-01482-6

precipitation efficiency; this mechanism can also apply to the warm 
phase of stratiform mixed-phase clouds97. The reduced removal of cloud 
water by precipitation has been hypothesized to increase cloud liquid 
water path and lifetime95. There is clear observational evidence of an 
increase in cloud droplet numbers and associated decrease in drop-
let radii due to aerosol perturbations from aircraft data98, ship-track 
observations99–103 and satellite remote sensing104–106. This is repro-
duced in CRMs and qualitatively in climate models105,107. Analysis of 
satellite-retrieved CloudSat108 radar reflectivity and Moderate Resolu-
tion Imaging Spectroradiometer109 effective radius data provides obser-
vational evidence for droplet size dependence of precipitation onset, 
with enhanced (low) drizzle rates above effective radii of 15 (10) μm. 
Combined with the documented impact of CCN on effective radii, this 
indicates warm-rain susceptibility to CCN perturbations110. These obser-
vations are limited to liquid-top shallow clouds, which represent a small 
fraction of global mean precipitation111. The observational evidence for 
an increase in liquid water paths via precipitation suppression due to 
increased aerosol concentrations is still disputed and cloud-regime 
dependent101,112–114. Many climate models simulate strong liquid water 
path responses to aerosol perturbations112,115, probably because their 
simplified representations of warm-rain formation (‘autoconversion’) 
have built-in power-law dependences on cloud droplet number but 
lack small-scale feedbacks, such as droplet size effects on evaporation 
and associated cloud entrainment feedbacks16,116,117. This uncertainty 
propagates into climate model assessments of APEs.

CCN-mediated effects on stratiform liquid clouds, including stra-
tocumulus, have been shown to increase droplet numbers and suppress 
warm-rain formation. This is consistent with warm-rain formation 
theory, supported by observational evidence from space-born cloud 
radars and reproduced by high-resolution CRMs. The expected effect 
is reduced light-rain occurrence, possibly compensated by increas-
ing occurrence of stronger rain events. However, the overall impact 
on large-scale precipitation remains unclear. We therefore assess this 
effect as category B, backed by some evidence and limited scientific 
consensus.

The following two mechanisms could be combined as aerosol 
effects on convection, but we retain the mechanistic separation by 
cloud phase prevailing in existing literature.

CCN-mediated effects on shallow convection
For shallow (liquid) convective clouds, an aerosol-mediated increase 
in cloud droplet numbers has several effects: associated smaller drop-
let radii enhance evaporation that increases the buoyancy gradient 
from cloud edge to centre, creating vorticity and increasing asso-
ciated entrainment/detrainment116, which results in a reduction of 
cloud size, liquid water path, buoyancy and precipitation. At the same 
time, suppression of rain production via the droplet number effect 
on autoconversion can produce enhanced condensation and latent 
heat release due to larger numbers of cloud droplets and associated 
increase in surface area, often referred to as ‘warm phase or condensa-
tional invigoration’118–120. It can also enhance cloud-top detrainment; 
subsequent evaporative cooling can destabilize the environment121. 
Both mechanisms could generate deeper clouds122 with potentially 
enhanced precipitation. The net effect on mean precipitation could 
therefore be small16,17 or even positive, depending on environmental 
conditions: high-resolution large-eddy simulations demonstrate a 
non-monotonic precipitation response with increases at low aerosol 
concentrations up to an optimal aerosol concentration, followed by 
a precipitation decrease118–120,123–125. For larger spatio-temporal scales, 
idealized simulations of shallow convection approach a radiative–
convective equilibrium state17. Although the transient behaviour 
approaching equilibrium responds to increasing cloud droplet number 
concentrations through deepening and delayed precipitation onset126, 
in the equilibrium state, associated decreases in relative humidity 
and faster evaporation of small clouds compensate for much of the 

effects with broader precipitation intensity distributions19. The overall 
effect depends on the relative importance of transient and equilibrium 
states17,93,127, with recent evidence highlighting limitations of idealized 
simulations that unrealistically favour equilibrium states128. However, 
contrasting environmental factors, such as boundary layer develop-
ment or humidity, can influence the overall effects123,129.

CCN-mediated effects on shallow convection have been shown 
to increase droplet numbers and slow warm-phase precipitation for-
mation. This is based on high-resolution CRMs and observational 
evidence. It is important to note that convection parameterizations 
in most GCMs do not represent any microphysical aerosol effects 
on convection. The overall effect on precipitation is less certain. We 
assess this effect as category B, backed by some evidence and limited 
scientific consensus.

CCN-mediated effects on deep convection
For deep (liquid and ice phase) convective clouds, ‘convective invigora-
tion’ is widely discussed, generally referring to enhanced aerosol levels 
causing stronger updrafts or higher clouds and an associated increase 
in precipitation93,98,130–136. Several hypotheses about underlying mecha-
nisms exist. Often overlooked, these share a common starting point 
with shallow convection in the liquid base of clouds: the suppression 
of warm-rain formation from reduced autoconversion with enhanced 
CCN in the lower, liquid part of the cloud137, with an associated reduc-
tion in droplet size and resulting entrainment/detrainment feedbacks. 
Subsequent invigoration hypotheses include enhanced condensation 
and associated latent heat release (warm-phase invigoration; com-
pare CCN-mediated effects on shallow convection)118,119,138,139; enhanced 
evaporation and downdraft formation affecting cold-pool strength and 
surface convergence140,141; delay of warm-phase precipitation increasing 
the amount of cloud water reaching the freezing level, enhancing the 
release of latent heat of freezing93,98,132, although the importance of this 
(‘cold-phase invigoration’) is disputed142; that depletion of cloud water 
through precipitation in low-aerosol environments could generate high 
supersaturations and subsequent activation of small aerosol particles 
into cloud droplets, enhancing condensation and (warm phase) latent 
heat release143 (a hypothesis shown to be inconsistent with a limited 
set of observations)144; and that enhanced CCN levels increase envi-
ronmental humidity through clouds mixing more condensed water 
into the surrounding air, preconditioning the environment for invig-
orated convection145. The last hypothesis is probably a consequence 
of idealized equilibrium simulations as it is not observed in realistic 
simulations across a wide range of environmental conditions146. Feed-
backs between convective clouds and their thermodynamic environ-
ment may modulate or buffer APEs. Overall, the strength and relative 
importance of mechanisms underlying convective invigoration are 
disputed142—it is sensitive to uncertain microphysical effects147,148 and 
strongly dependent on environmental regimes49,130,140,149–151. In addition, 
the excess buoyancy associated with the respective mechanisms can 
be partially offset by negative buoyancy associated with condensate 
loading152,153, with the net effect dependent on condensate offload-
ing through precipitation. The role of condensate loading has been 
explored through theoretical calculations that show the potential of 
aerosol-induced invigoration is limited for cold-based storms and that 
aerosol-induced cold-phase processes weaken, rather than strengthen, 
the updrafts in warm-based storms (referred to as aerosol enerva-
tion)154. The first systematic multimodel assessment of these competing 
aerosol effects on deep convective updrafts153 has been performed 
as part of a deep convection case study153 over Houston, Texas, USA, 
under the umbrella of the Aerosol, Cloud, Precipitation and Climate 
initiative (Fig. 4). This intercomparison revealed updraft increases by 
5–15% in the mid-storm regions (4–7 km above ground) with increased 
CCN, driven primarily by enhanced condensation, with waning and 
mixed difference in levels above. Condensate loading contributions 
are generally limited. Despite this apparent invigoration, six of seven 
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models produce precipitation decreases (of 10–80%), highlighting 
the complexity of precipitation responses to aerosol perturbations. 
There are indications that microphysical effects strengthen deep and 
weaken shallow clouds in convective cloud fields, thereby broadening 
the precipitation intensity distribution18,44. Observations and model-
ling suggest a non-monotonic effect, with precipitation peaking at an 
optimal aerosol concentration155,156. It should be reiterated that even 
high-resolution CRM simulations of aerosol effects on deep convection 
remain subject to large uncertainty, particularly with mixed-phase and 
ice-cloud microphysics, affecting the simulated base states as well as 
their response to aerosol perturbations147 (Fig. 4). Few current climate 
models include aerosol-aware convection parameterizations, and their 
early results indicate limited aerosol effects on convective precipitation 
on the global scale157,158. However, the associated uncertainties remain 
large, providing challenges for the next generation of cloud-resolving 
climate models.

CCN-mediated effects on deep convection consistently show 
increased droplet numbers and reduced warm-rain formation in the 
lower parts of the cloud. This builds on a robust theoretical foundation, 
is supported by limited observations and is consistently reproduced by 
CRMs. The propagation of these perturbations through the mixed- and 
ice-phase microphysics of clouds remains uncertain across models, 
with limited observational constraints. Several hypotheses exist on 
associated changes in buoyancies leading to invigoration, with models 
consistently simulating an increase in latent heating of condensation 
due to the increased surface area of enhanced droplet numbers. How-
ever, their importance remains highly uncertain. The overall effect 
on aggregated precipitation remains highly uncertain. We therefore 
assess this effect as category C, backed by plausible hypotheses but 
with limited evidence and limited scientific consensus.

INP-mediated effects
Ice-nucleating particle (INP) effects on clouds are likely to be substan-
tial, but still highly uncertain, given the unknown proportion of cloud 
ice between −38 and 0 °C that forms by INP-induced heterogeneous 
freezing or remains supercooled. Clouds glaciate below approximately 
−38 °C, where droplets freeze homogeneously. Increased concentra-
tions of INPs (generally solid or crystalline aerosols that provide a sur-
face onto which water molecules are likely to adsorb, bond and form 
ice-like aggregates) have been proposed to enhance the glaciation of 
clouds97,159,160, with an associated increase in precipitation efficiency 
and reduction of cloud lifetime161. Low INP concentrations in remote 
marine environments consistently inhibit precipitation162. However, the 
complexity of microphysical pathways in mixed- and ice-phase clouds 
is substantial148, with potential compensating pathways buffering the 
response, leading to low precipitation susceptibility163. Modification 
of precipitation through controlled INP emissions (‘cloud seeding’) has 
been extensively attempted in the weather modification community, 
with demonstrated impact on cloud microphysical processes164; how-
ever, limited evidence exists for its effectiveness in terms of large-scale 
precipitation modulation165,166. The role of INPs is further complicated 
by secondary ice production processes that are ill constrained but can 
lead to rapid cloud glaciation167.

INP-mediated effects have been shown to affect cloud phase and 
microphysics. A number of hypotheses exist on subsequent effects on 
precipitation. However, there is no complete theoretical framework, 
and evidence from modelling and observations is limited. We therefore 
assess this effect as category C, backed by plausible hypotheses but 
only limited evidence and limited scientific consensus.

It is important to reiterate that occurrence and strength, and 
spatio-temporal extent, of radiative and microphysical APEs are modu-
lated by environmental conditions49,141,149,168,169 as well as energy/water 
budget constraints11,33,36, which complicates their detectability. In 
addition, the potential exists for compensation between individual 
mechanisms, buffering the overall precipitation response16.

Detectability and attribution of precipitation 
changes
In situ observations provide the most detailed insights into processes 
underlying APEs and are invaluable for the development and evalu-
ation of theories and models. However, due to the inhomogeneous 
and intermittent nature of precipitation, it is generally impossible to 
measure areal average precipitation reliably. Representation errors170 
are likely to exceed the expected magnitude of aerosol effects.

Statistical analysis of satellite-retrieved aerosol radiative proper-
ties and precipitation shows higher precipitation rates with higher 
aerosol optical depth134 with potentially non-monotonic behaviour171. 
Confounding factors (as aerosol extinction, cloud and precipitation 
are controlled by common factors, such as relative humidity172, and 
precipitation is the predominant aerosol sink173) complicate the inter-
pretation. More fundamentally, remotely sensed aerosol properties 
are not always representative of the relevant aerosol perturbations174, 
and statistical analyses rely on assumptions of spatial representative-
ness of not co-located retrievals175,176. However, satellites provide the 
only source for global observational constraints, and the abundance 
of data permits robust statistical relationships. When environmental 
conditions are controlled for177, the apparent increase in precipitation 
with aerosol extinction is substantially reduced, although a positive 
relationship remains for cloud regimes177–179 with tops colder than 
0 °C, suggesting a role of ice processes178. Furthermore, satellite data 
provide constraints on microphysical processes: TRMM and Cloud-
Sat observations show a systematic shift in the relationship between 
raindrop size distribution and liquid water path with enhanced aerosol 
concentrations off the coast of Asia180.

Situations with well-characterised aerosol perturbations can serve 
as analogues for APEs181. Aerosols emitted from point sources, such 
as ships, volcanoes, industrial sites or cities, can cause distinct tracks 
in clouds that can be analysed from satellite data101,182,183, even when 
invisible184. The analysis of cloud droplet size in ship-track data shows 
a consistent effective radius reduction in the track99,113, consistent 
with observed effective radii reductions in response to SO2 emissions 
from a degassing volcano112. In general, cloud droplet effective radius 
is expected to be positively correlated with precipitation formation 
through warm-rain formation185. However, the precipitation in ship 
tracks reveals a differentiated response across cloud regimes113. Satel-
lite observations of lightning enhancement over shipping lanes186 also 
provide strong indications of aerosol effects on convective microphys-
ics and potential aerosol-driven mesoscale circulations, although APEs 
themselves remain more elusive187, and contributions from dynamical 
factors cannot be ruled out.

The difficulty remains to consistently reconcile observations 
with modelling data: any shift in the precipitation intensity distribu-
tion also implies a shift in the fraction of rain detectable from radar or 
microwave data188. In addition, the formation of detectable perturba-
tions in clouds is limited to a subset of environmental conditions102,184 
with overall limited precipitation amounts, thereby limiting the global 
representativeness of such observations.

On larger scales, observational uncertainty and low signal-to-noise 
ratios complicate the attribution of observed changes of regional 
APEs189. Detection and attribution techniques190 use GCMs to estimate 
spatio-temporal response patterns (‘fingerprints’) of precipitation to 
aerosol perturbations, which then can be compared with observed 
precipitation changes. However, observational and modelling uncer-
tainties still obscure unambiguous evidence of such fingerprints of 
aerosol on regional-scale precipitation191–193.

Overall assessment and new frontiers
This article reviews the evidence and scientific consensus for APEs 
and the underlying set of physical mechanisms. Broad consensus and 
strong theoretical evidence indicate that because global mean pre-
cipitation is constrained by conservation of energy6 and water11,13 as 
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well as surface evaporation25, aerosol radiative effects act as direct 
drivers of precipitation changes8. Likewise, aerosol radiative effects 
cause well-documented shifts of large-scale precipitation patterns, 
such as the ITCZ. The extent to which APEs are (1) applicable to smaller 
scales and (2) driven or buffered by compensating microphysical and 
dynamical mechanisms and budgetary constraints is less clear. Despite 
broad consensus and strong evidence that suitable aerosols increase 
cloud droplet numbers and reduce warm-rain formation efficiencies 
across cloud regimes, the overall aerosol effect on cloud microphysics 
and dynamics, as well as the subsequent impact on local, regional and 
global precipitation, is less constrained. Air-pollution control measures 
will reduce aerosol levels in the future, with an expected reversal of 
aerosol effects on regional precipitation patterns194.

Research on APEs has been limited by the fact that, locally to 
regionally, precipitation is controlled by complex nonlinear interac-
tions with multiple microphysical, radiative and dynamical feedbacks; 
the expected aerosol-induced change in precipitation is potentially 
smaller than the internal variability195 and uncertainty in current 
observations; current observations can constrain only some of the 
processes involved (satellite retrievals are often limited to proxies 
of the parameters involved and in situ measurements are limited, in 
particular in convective updrafts); isolating causal effects of aerosol 
on precipitation in the presence of multiple confounding variables 
remains challenging (it is easier to identify a strong ‘effect’ than to prove 
that it is the consequence of confounding); and finally, the represen-
tation of clouds in current climate models is inadequate to represent 
key microphysical processes and, importantly, the coupling between 
microphysics and cloud dynamics. Consequently, substantial uncer-
tainty remains, limiting our ability to quantify and predict past and 
future precipitation changes.

We emphasize that, in terms of local impacts on humans and eco-
systems, absolute precipitation changes are likely to be less important 
than relative precipitation changes in the mean and the frequency of 
occurrence of extremes. To illustrate this point, the absolute precipi-
tation changes over the Sahel region simulated by the Coupled Model 
Intercomparison Project Phase 6 multimodel intercomparison seem 
negligible but constitute ~40% of the local precipitation (Fig. 1). Like-
wise, local impacts may be dominated by regional shifts of precipitation 
patterns rather than precipitation process changes. These aspects have 
not been given sufficient attention.

Out of ten mechanisms reviewed, only three have been assessed 
to be supported by strong evidence and broad consensus, and two are 
based primarily on hypotheses without consensus (Table 1). Future 
research should define critical tests for numerical models based on 
observations, in particular of convective updraft microphysics and 
thermodynamics, including observational simulators for comparabil-
ity. Active remote sensing and systematic in situ observations196,197,198, 
including from uncrewed aerial vehicles, will provide novel constraints 
on particularly uncertain mixed-phase cloud microphysics and dynam-
ics. Advanced geostationary satellites and cube-sat fleets will allow 
monitoring of the full cloud life cycle. Idealized aqua-planet33,199 or 
radiative–convective equilibrium simulations18,200, such as the GAP 
Radiative Convective Equilibrium aerosol perturbation model inter-
comparison4, connect evidence from local-scale effects to regional 
and global precipitation. The availability of global CRMs201 and digital 
twin Earths202 provides important opportunities to overcome our 
reliance on climate models with parameterized local-scale processes 
and inadequate microphysics, which currently do not represent three 
of the ten mechanisms reviewed here (Table 1). However, even CRMs 
have large uncertainties in cloud microphysical processes that can 
obscure aerosol effects147 and remain to be systematically constrained 
by observations. The shift to global CRMs, which will be a focus of the 
GAP initiative4, will also allow for robust quantification of the con-
nection between local ACIs and large-scale dynamical feedbacks and 
teleconnections.
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