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Abstract. There is a continuously increasing need for reli-
able feature detection and tracking tools based on objective
analysis principles for use with meteorological data. Many
tools have been developed over the previous 2 decades that
attempt to address this need but most have limitations on
the type of data they can be used with, feature computa-
tional and/or memory expenses that make them unwieldy
with larger datasets, or require some form of data reduc-
tion prior to use that limits the tool’s utility. The Tracking
and Object-Based Analysis of Clouds (tobac) Python pack-
age is a modular, open-source tool that improves on the over-
all generality and utility of past tools. A number of scientific
improvements (three spatial dimensions, splits and mergers
of features, an internal spectral filtering tool) and procedu-
ral enhancements (increased computational efficiency, inter-
nal regridding of data, and treatments for periodic boundary
conditions) have been included in tobac as a part of the to-
bac v1.5 update. These improvements have made tobac one

of the most robust, powerful, and flexible identification and
tracking tools in our field to date and expand its potential use
in other fields. Future plans for tobac v2 are also discussed.

1 Introduction

There has been a great deal of recent interest in robust,
large-scale objective identification and tracking of clouds and
other meteorological features (e.g. Heus and Seifert, 2013;
Hu et al., 2019; Núñez Ocasio et al., 2020). As atmospheric
phenomena of interest are nearly always in motion due to
dynamic and thermodynamic processes, there is substantial
utility in tracking frameworks for atmospheric data in gen-
eral. A moving frame of reference allows one to look at the
phenomena from a Lagrangian perspective. Clouds are one
such phenomenon for which tracking is useful. Clouds are
near-ubiquitous features in the Earth’s atmosphere and play
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critical roles not only in tropospheric heat and moisture trans-
port (e.g. Malkus, 1958) but also with respect to scattering
of solar radiation and absorption or emission of infrared ra-
diation in the context of the global climate (Stephens and
L’Ecuyer, 2015). Convective clouds and cloud systems can
range in size from tens of metres to hundreds of kilometres;
can exist for as short as a few minutes and as long as sev-
eral days; exhibit a wide variety of morphological character-
istics; and undergo complex lifecycles that have a growing
initiation stage, a quasi-steady-state mature stage, and a col-
lapsing decay stage (Cotton et al., 2011). All of these ele-
ments make clouds prime candidates for objective analysis
techniques, which have been successfully demonstrated in
recent cloud tracking studies (e.g. Leung and van den Heever,
2022; Freeman et al., 2024). However, clouds are far from the
only meteorological phenomena where robust tracking tools
are useful. Convective cold pools, which are density currents
that manifest via the evaporation of convective precipitation,
can be identified and tracked using atmospheric thermody-
namic and dynamic quantities such as temperature or tem-
perature proxies (e.g. potential temperature), water vapour
concentrations, and near-surface wind fields (e.g. Tompkins,
2001; Feng et al., 2015; Drager and van den Heever, 2017;
Marinescu et al., 2017; Drager et al., 2020). Atmospheric ra-
diative quantities (e.g. outgoing longwave radiation (OLR))
have clear uses in cloud objective identification (e.g. Gill and
Rasmusson, 1983; Weickmann, 1983; Rempel et al., 2017;
Senf et al., 2018) but can also be leveraged to detect and track
processes such as sea ice evolution (e.g. Singarayer et al.,
2006). Lightning mapping systems (Rison et al., 1999; Nag
et al., 2015; Bruning et al., 2019) detect the extent of dis-
charges within thunderstorm cells, and the accumulated ex-
tent is a trackable proxy for electrified storm volume. If such
tracking tools are made general enough, researchers work-
ing outside the realm of atmospheric science may also bene-
fit from them, such as ornithologists or entomologists inter-
ested in bird and bug seasonal migration, respectively (e.g.
Crewe et al., 2020; Knight et al., 2019). At present, however,
only one such tool can address this myriad of uses just de-
scribed while also being openly developed and extensible by
any user: the Tracking and Object-Based Analysis of Clouds
(tobac; Heikenfeld et al., 2019), a Python package based in
objective analysis principles that uses modern analysis tech-
niques to identify, discretize, and track objects and fields of
interest.

The most powerful and unique feature of tobac is its ability
to use virtually any gridded input dataset and variable – me-
teorological or not – as input variables, a property we refer to
as agnosticity. For example, while tobac was initially devel-
oped for use with clouds and associated meteorological data
(Heikenfeld et al., 2019), with uses including tracking warm-
season deep convective systems and mesoscale convective
systems (MCSs) via satellite-observed infrared brightness
temperature (e.g. Li et al., 2021; Kukulies et al., 2021), to-
bac’s variable- and grid-agnostic nature has facilitated its use

in completely different applications. For example, tracking
on quantities such as aerosol concentration (e.g. Bukowski
and van den Heever, 2021) and trace gas concentrations and
masses (e.g. Zhang et al., 2022) is of enormous use to at-
mospheric chemists, climate scientists, and others studying
movement of such quantities within the atmosphere. tobac
both draws from and expands upon the procedures devel-
oped in earlier cloud identification and tracking tools, and
we have detailed some of the history of tracking tools in the
atmospheric sciences below.

Tracking has historically required a great deal of human
input and attention due to a lack of computationally effi-
cient methods for the location, assessment, and connection
of different features in time. Initial efforts to track clouds
from observations were performed by hand (Fujita, 1969),
and the need to automate such methods was immediately
realized (Menzel, 2001). One such early method, the Thun-
derstorm Identification, Tracking, Analysis, and Nowcasting
tool (TITAN; Dixon and Weiner, 1993), is a well-designed
and powerful approach for the detection and tracking of thun-
derstorms. While it does incorporate computational analy-
sis of data, it is heavily reliant on physical principles (i.e. it
requires specific datasets or variables and can only be used
to track certain phenomena), requires manual assessment of
the output due to the computational limitations at the time,
and is a centroid-based method that sometimes has difficulty
tracking storm systems for their full lifetimes. As discussed
in Dawe and Austin (2012), earlier studies involving track-
ing of clouds (e.g. Zhao and Austin, 2005a, b; Heus et al.,
2009) required scientists to contribute a great degree of man-
ual and/or visual selection to the clouds they considered in
their studies. This is not only time-consuming to an extent
that is impossible to scale for large datasets but also intro-
duces subjectivity to an analysis that should ideally be ob-
jective. Some later publications (e.g. Plant, 2009; Dawe and
Austin, 2012; Heus and Seifert, 2013) have more general cri-
teria, allowing for automated selection, but exhibit compu-
tational or scientific limitations due to their design. Dawe
and Austin (2012) tracked clouds as a combination of 3D
liquid water content and buoyancy in 3D space but required
computationally expensive determinations of 4D spatiotem-
poral connectivity and had specific definitions for different
cloud components, limiting use to a variety of different cloud
types. Heus and Seifert (2013) simultaneously expanded on
and improved the tractability of the approach of Dawe and
Austin by connecting thermals, cloud envelopes, and precip-
itation shafts but reduced the amount of memory needed by
projecting these fields into two spatial dimensions and us-
ing the vertical dimension as a contiguity check between fea-
ture columns. However, both Dawe and Austin’s (2012) and
Heus and Seifert’s (2013) methods were designed to be used
in large eddy simulation (LES) output fields of shallow cu-
mulus with a vertical extent of less than 4 km, thereby lim-
iting the applicability of these methods with cloud systems
that exhibit more vertical structure (e.g. layered clouds, deep
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convection, or slantwise convection) and other datasets that
have similarly complex 3D morphology. Gropp and Daven-
port (2021) recently developed a powerful tracking tool for
supercell thunderstorms that was effectively demonstrated at
a 3-hourly time resolution (coarser than the requirements of
many tracking tools) but is limited by its focus on supercells
and cannot be easily generalized to other cloud types or fea-
tures due to its inherent design. Similar utility limitations can
be seen in the many tracking tools that have incorporated pro-
cedures for splits and mergers of tracked objects (e.g. Dixon
and Weiner, 1993; Gambheer and Bhat, 2000; Hu et al., 2019;
Núñez Ocasio et al., 2020): most of these tools leverage
the specific phenomena being detected and tracked in order
to construct a definition for the determination of splits and
mergers, which preclude such treatments from being used
outside the framework of these particular cases. The Warning
Decision Support System–Integrated Information (WDSS-
II) data synthesis platform (Lakshmanan et al., 2007) in-
cludes multiple tracking packages, including the Storm Cell
Identification and Tracking algorithm (Johnson et al., 1998),
a multi-scale cell tracking algorithm, and cross-sensor fusion
capability (Lakshmanan et al., 2009; Lakshmanan and Smith,
2009). WDSS-II has been widely used for real-time appli-
cations in the US National Weather Service, but is subject
to licensing restrictions for that purpose, although its source
code is apparently available upon request. Some other tools,
such as the TempestExtremes package developed by Ullrich
and Zarzycki (2017) and the PyFLEXTRKR package devel-
oped by Feng et al. (2023), utilize a more general variable
and grid framework but lack comprehensive area and volume
analysis tools for further investigation of feature-associated
data. In recent years, there has also been a greater research
focus on atmospheric rivers (ARs), including many existing
within the Atmospheric River Tracking Method Intercom-
parison Project (ARTMIP; Shields et al., 2018). Guan and
Waliser (2015, 2019) have developed a tool called Tracking
Atmospheric Rivers Globally as Elongated Targets (TAR-
GET), which is designed for the detection and tracking of at-
mospheric rivers (ARs). TARGET includes techniques such
as split and merger processing, periodic boundary condition
treatments, and grid agnosticity but can only be applied as
presently designed to ARs.

It is therefore evident that there already is a rich history
of different detection, analysis, and tracking tools in the at-
mospheric sciences, and as such tobac v1.2 strives to utilize
as many of the strengths of these pre-existing tools as pos-
sible while broadening science applications and optimizing
procedures to result in a more general and powerful analysis
tool. Additionally, tobac was designed to be open source and
modular and was also developed with open-science princi-
ples in mind. These characteristics make it especially unique
in conjunction with its variable and grid agnosticity. Users
can freely download the tobac package and modify it as ex-
tensively as they please and also have the ability to only use
different components of it with other Python packages. The

continuous development of the tobac package and its de-
tailed, user-friendly documentation have made it increasingly
accessible and attractive to atmospheric scientists performing
data analysis. Despite the utility, modularity, and flexibility
of tobac v1.2, the increasing resolution and spatial extent of
models and identification of new use cases (such as in LES
modelling) made it clear that the code base needed to be en-
hanced from both a scientific and procedural point of view.
The advent of new spaceborne missions with high-resolution
observations, such as the National Aeronautics and Space
Administration’s Atmospheric Observing System (AOS) and
Investigation of Convective Updrafts (INCUS) programmes
and the European Space Agency’s EarthCARE programme,
will involve the collection of vast quantities of 3D data that
require processing of the vertical dimension with great ef-
ficiency that tobac v1.2 cannot do. In order to update to-
bac for these needs, its scientific capabilities were enhanced
through the inclusion of the third spatial (vertical) dimension
in feature detection and tracking, the processing of feature
splits and mergers through time, and tools allowing for spec-
tral smoothing of input data. Additionally, we incorporated
more procedural improvements such as increases in compu-
tational efficiency, ingestion of multiple data sources on dif-
ferent grids (e.g. performing feature detection on one grid
and segmentation on a separate grid), and treatments for pe-
riodic boundary conditions (PBCs).

Our goal in this publication is to present each new im-
provement that has been released as part of tobac v1.5. In
Sect. 2, we discuss the strengths and weaknesses of the mod-
ular and open-source tobac v1.2 package with demonstra-
tions of its capabilities, while Sect. 3 details the scientific
improvements. Section 4 presents the procedural enhance-
ments, and Sect. 5 provides a summary of our changes to
tobac, concluding thoughts on tobac v1.5, and some planned
changes that will be included in future releases.

2 Overview of tobac v1.2

Before elaborating on the new capabilities that have been
included in tobac v1.5, we begin with a general overview
of the design and capabilities of the original tobac pack-
age, denoted v1.2. tobac was first developed through a multi-
institutional collaboration (Heikenfeld et al., 2019) in order
to provide a modular code base for “tracking and analysing
individual clouds in different types of datasets”. This pack-
age consisted of three primary components: “feature detec-
tion”, or the objective identification of features from minima
or maxima in gridded datasets; “segmentation”, or the dis-
cretization of the same or different gridded data based on
previously detected features; and “tracking”, or the linking
of detected features to one another through time. Segmen-
tation and tracking operate independently of each other, but
both require feature detection to have been performed on a
data field of interest. Hereafter, we will use the term “fea-
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ture” to denote phenomena identified using the feature detec-
tion module, “segmented features” or “segmentation fields”
to mean the instantaneous and spatially extensive regions
associated with features by the segmentation module, and
“cell” or “track” to refer to the line segments produced by
spatiotemporally linking features. Note that the use of “cell”
here does not necessarily mean the kinds of convective cells
that comprise thunderstorms, though it can if updraughts are
the features of interest.

The procedures contained within tobac v1.2 could be per-
formed on any gridded data field of interest, though only seg-
mentation could be performed on data in three spatial dimen-
sions, whereas feature detection and tracking could only be
performed on data in two spatial dimensions, requiring some
form of data dimensionality reduction when analysing three-
dimensional data. These key elements, demonstrated using
a field of radar reflectivity data, can be seen in Fig. 1. The
details of how these components were constructed are de-
scribed in Heikenfeld et al. (2019), but we discuss the gen-
eralities and how tobac can be applied to different use cases
within this section.

Feature detection in tobac is performed by first establish-
ing one or more contiguous regions of gridded data meet-
ing or exceeding a threshold, as well as satisfying additional
criteria such as a user-set minimum size. These regions are
then saved as unique single-point identifiers. The point lo-
cation associated with each identifier can be set by users to
either be geometric centroids, weighted-difference positions,
or extrema within the data. Should the user provide multiple
thresholds, features detected at a higher-magnitude threshold
that exist within a lower-threshold region of features super-
sede and replace the feature(s) detected at the lower thresh-
old (e.g. Heikenfeld et al., 2019, their Fig. 2). This multi-
threshold capability allows for the identification of greater-
magnitude data existing within a lower-magnitude data re-
gion without losing the sensitivity to lower-magnitude data.
For example, using multiple thresholds on a modelled verti-
cal velocity field enables the detection of deep convective up-
draughts within a broader, weaker updraught region, as well
as isolated, weak boundary layer thermals. An illustration
of feature detection being performed on gridded NEXRAD
radar reflectivity data obtained during the CSU Convective
Cloud Outflows and UpDrafts Experiment (C3LOUD-Ex;
van den Heever et al., 2021) can be seen in Fig. 1a–b. In
this figure, convective storms in a grouping near Cheyenne,
WY (Fig. 1a), are identified using a radar reflectivity thresh-
old of 20 dBZ with the weighted-difference method. Each of
these storms is labelled as a single-point feature, marked in
Fig. 1b. Once features have been identified, the additional
components of tobac, i.e. segmentation and tracking, can be
utilized.

The segmentation approach within tobac v1.2 begins with
a previously identified set of tobac features. Where the
feature detection procedure reduces contiguous regions of
data to single points, segmentation discretizes a full vol-

ume or surface area associated with each of these iden-
tified features. For both 2D and 3D segmentation, the
skimage.segmentation.watershed procedure (Carpenter et al.,
2006; van der Walt et al., 2014, 2023) is used. In this method,
feature locations are used to place “seeds” in the data, which
are expanded outwards progressively down the gradient of
the data in the same manner that fluid would flow – hence
the term “watershedding” (see e.g. Senf et al., 2018). This al-
lows for the discretization of data regions pertaining to each
feature, even when multiple features exist within the same
contiguous data region. In 2D watershedding, this procedure
simply operates in two dimensions, but for 3D watershed-
ding, the entire vertical column where the 2D feature is lo-
cated has markers placed in it, except where data points do
not exceed the segmentation data threshold. When data fields
are layered, staggered, discontinuous in height, or otherwise
irregular through the vertical dimension, this may lead to
some data fields being erroneously segmented together. Such
misrepresentations have been identified through quality con-
trol of tobac v1.2 output and triggered development of im-
provements. The discretized field, or “segmentation mask”,
for each time step is saved as an array with the same dimen-
sions as the input field. Segmentation fields produced using
the 2D radar reflectivity data from our previously selected 2D
radar reflectivity features (Fig. 1b) are shown in Fig. 1c. Each
segmented region illustrates a wider and weaker reflectivity
field located outside of a greater reflectivity region. These
segmented regions are associated with the detected convec-
tive cores (features) and most likely indicate rainfall from the
larger clouds being driven by the convective cores.

Finally, the tracking procedure within tobac v1.2 also re-
quires a previously existing set of tobac features. These fea-
tures are then used with the Python Trackpy package (Allan
et al., 2021) to predictively link connected features in time
through the Crocker–Grier algorithm (Crocker and Grier,
1996). The presence of this tool within the tobac package
introduces time evolution to the identified features and also
links features to each other. Not only does this allow for the
examination of cells throughout their lifetime, but also per-
mits the scrutinization of individual features and of any or
all features comprising the cell, which is highly useful for
studying storms, clouds, and other temporally evolving mete-
orological phenomena. This use of Trackpy and other Python
packages demonstrates the modular nature of tobac, and its
ability to capitalize on software development advances oc-
curring in different communities. This not only enhances the
performance of tobac itself but also provides it with the flex-
ibility to be used with Python packages other than those used
to develop tobac.

Despite the utility and power contained within this tool,
tobac v1.2 had several important limitations from both a sci-
entific and procedural standpoint, as touched on in Sect. 1.
The limitation of feature detection and tracking to 2D, as well
as the column-based approach to 3D segmentation using 2D
features, meant that data fields that did not reduce cleanly
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Figure 1. Demonstration of tobac feature detection and segmentation of NEXRAD radar reflectivity data at 2 km above ground level from
the Cheyenne, WY, radar (located just to the NW of the domain shown here) on 25 May 2017 during the C3LOUD-Ex field campaign
(van den Heever et al., 2021). Panel (a) shows the actual radar data; panel (b) displays the objectively identified radar reflectivity features
for thresholds of 20, 25, 30, 35, and 40 dBZ as dots with a progressively darker red colour at higher magnitude; and panel (c) shows the
reflectivity segmentation regions associated with the features as differently coloured outlines. The straight grey lines depicted in each panel
represent state borders.

Figure 2. An illustration comparing cross-sections of 2D and 3D updraught four-threshold feature detection on the same model 3D vertical
velocity field. Panel (a) shows the projection of column maximum vertical velocity and the multiple features contained in this area as white
dots, while panel (b) shows a cutaway 3D isosurface plot of a 3D updraught detected at the 10 m s−1 threshold covering the same area as
panel (a). Black, blue, magenta, and red shading indicate pixels exceeding the 1, 3, 5, and 10 m s−1 thresholds, respectively; the white dots
illustrate feature positions within each cross-section; and the white line in panel (a) represents the location of the front-left cutaway in panel
(b), ahead of which (in y-point space) transparent isosurfaces are used to reveal the complex inner structure of the updraught via the opaque
isosurfaces. The surface colour shading in panel (b) is surface density potential temperature, and its colours correspond to that seen in the
colour bar to the right of panel (b).

into two dimensions (e.g. environments with strong vertical
wind shear or layered clouds, deep convective clouds with
multiple discontinuous vertical regions producing conden-
sate, tilted convective storms, and intrusions of aerosol lay-
ers composed of different species at different altitudes) might
have produced untrustworthy or confusing results when anal-
ysed using tobac v1.2. The tobac v1.2 tracking approach
also lacked the ability to identify and process the splits and
mergers of features over time, which is an issue that previ-
ous researchers developing tracking tools encountered and
attempted to address (e.g. Dixon and Weiner, 1993; Hu et al.,
2019). Additionally, included data processing tools were lim-
ited, with no bandpass or spectral filter techniques included

in the tobac v1.2 package to smooth or isolate data in noisy
fields. From a computational perspective, the original imple-
mentation was also not well optimized, with one example
of tracking several hundred thousand features (representing
about 2 weeks of model data at 5 min) taking over 2 weeks
to process on a modern server and requiring substantial in-
creases in computational efficiency to enable tractable usage
with large datasets. Using detected features to segment data
that exists on a different grid was also more challenging with
this version of tobac, as it required users to remap these data
to a common grid. Finally, tobac v1.2 also lacked the ability
to compute features, segmentation fields, and tracks on data
with PBCs, a common characteristic in idealized numerical

https://doi.org/10.5194/gmd-17-5309-2024 Geosci. Model Dev., 17, 5309–5330, 2024



5314 G. A. Sokolowsky et al.: tobac v1.5

models. All of these needs motivated the improvements that
are discussed in the following two sections.

3 tobac v1.5 – scientific improvements

3.1 Three-dimensional feature detection, segmentation,
and tracking

One of the scientifically consequential improvements to to-
bac made as a part of v1.5 is the addition of the vertical di-
mension to feature detection and tracking, as well as an over-
haul of 3D segmentation. When 3D data are input, contiguity
and spacing of regions within these data are now assessed in
all three spatial dimensions versus just the horizontal dimen-
sions in v1.2. Further, the code also supports both uniform
and non-uniform vertical grid spacing, allowing for use with
modelling and observational data exhibiting either of these
common grid structures. Data fields with a 3D input now out-
put additional information on the vertical centre of the fea-
ture, using the same centre-finding methods that apply to 2D
input. Including these additional data can be used for analy-
ses that depend on vertical information, e.g. defining the ver-
tical structure of updraughts and downdraughts within con-
vective clouds, identifying intrusions of concentrated aerosol
layers, and highlighting vertical layers of elevated environ-
mental stability.

In addition to the wider variety of scientific analyses that
vertical information enables, these code changes also lead to
substantial differences in feature detection output between
3D data and their counterparts reduced to 2D, such as that
seen in Fig. 2. Here, a model vertical velocity field is used
for feature detection of updraughts at 1, 3, 5, and 10 m s−1

thresholds, with the 2D reduction being a plan view of the
column maximum value. Figure 2a illustrates how much of
the vertical structure of a 10 m s−1 feature in the data (white
dots within the coloured isosurfaces) is captured by our new
method. Comparison of Fig. 2a and b shows that 3D features’
horizontal positions may differ from their 2D-projected
counterparts when the vertical dimension is included in fea-
ture detection and positioning. For convective systems with a
high degree of 3D organization, such as quasi-linear convec-
tive systems, capturing the third dimension can be important
to correctly analyse the microphysical–thermodynamical–
dynamical coupling that governs their evolution.

While 2D feature detection is less computationally expen-
sive than 3D and may be a faster solution that produces com-
parable results, users may also find that 2D projections of
3D data can lead to erroneous results, such as that illustrated
in Fig. 3. Here, a cumulus cloud and cirrus cloud existing
within a sheared environment are travelling in opposite hor-
izontal directions, with the cumulus cloud also moving up-
wards in time. Figure 3a–c depict how tobac v1.2 is able to
identify the clouds in the initial scene but fails to track the
cumulus cloud due to the cirrus cloud hiding it from view in

Figure 3. A depiction of tobac v1.2 (top row, plan view) and to-
bac v1.5 (bottom row, vertical cross-section) feature detection and
tracking for a scenario with upper-level cirrus moving over a cu-
mulus cloud developing in a sheared environment. Each column’s
panels are depictions from the same time. The tobac v1.2 approach
pictured in the top row fails to capture the temporal evolution and
vertical propagation of the cumulus cloud due to the overlying cir-
rus, and even incorrectly recognizes the cumulus in panel (c) as a
completely new feature and track from its earlier stage in panel (b).
In contrast, the tobac v1.5 approach consistently and continuously
identifies each cloud due to their separation in 3D space, resulting
in correctly linked cloud tracks for each of the cirrus and cumu-
lus. The coloured circles denote different features at their present
times in each panel, with the coloured Xs indicating their position
at previous times and the dotted lines representing the correspond-
ing tracks. The symbol t here denotes a generic starting time, while
1t denotes the time step from scene to scene.

Fig. 3e due to the two-dimensional framework. This leads to
the cirrus cloud being correctly tracked through time, while
tracking of the cumulus cloud is non-existent: its height evo-
lution is missed, and the failure to detect it as a feature in
Fig. 3b leads to it being considered as a separate, completely
new tracked feature in Fig. 3c. Conversely, Fig. 3d–f depict
the time evolution of this scene when 3D motion and detec-
tion are considered by tobac v1.5: not only are these two dis-
crete clouds recognized, identified, and tracked correctly in
time, but the vertical displacement of the cumulus cloud is
also apparent in its track. Thus, a possible error arising from
collapsing 3D data to 2D is the disappearance of 3D features.

Unlike with feature detection, the segmentation routine in
tobac v1.2 already has some capabilities for 3D data process-
ing, as discussed in the previous section. The column-based
3D segmentation approach used in v1.2 – where the entire
vertical column at a feature location is seeded with mark-
ers for watershedding (the segmented regions are identified
growing outward from the seeds) – works reasonably well for
2D features when the 3D field being segmented does not ex-
hibit much vertical stratification or tilting. However, seeding
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Figure 4. A schematic of the new box seeding approach versus the
older column seeding approach for tobac 3D segmentation. Pan-
els (a)–(d) depict a scene comprised of a mix of convective and
stratiform clouds, with feature detection and segmentation being
performed on a total condensate field. Panels (a) and (b) depict
the older column seeding approach, and panels (c) and (d) show
the new tobac v1.5 box seeding method. The left column shows
the positions of the initial features used as segmentation markers
as highlighted lines or circles, with the segmentation regions pro-
duced from these markers hatched with the corresponding colour in
the right column. Note that the midlevel stratiform clouds seeded
with cyan and magenta are in front of and behind the cumulonim-
bus cloud seeded in red, respectively, and would not themselves be
seeded or segmented in red with the column seeding method.

the full column is not a rigorous approach when we have the
feature’s vertical position, as with 3D-detected features. As
such, we have introduced a new “box seeding” method which
seeds a box of user-defined size in each dimension centred at
the 3D location of the feature. This eliminates the possibility
of spuriously connected grid points arising from seeding an
entire column, and ensures that features which are close in
2D space but exhibit greater vertical separation do not un-
duly influence each other’s segmentation masks. A depic-
tion of the differences in 3D segmentation from each method
can be seen in the schematic pictured in Fig. 4. This figure
depicts a multi-layered cloud field of cumulus, altostratus,
and cumulonimbus, where segmentation is being performed
on total condensate. The top row (Fig. 4a–b) illustrates the
use of the older column seeding method and its output, with
the bottom row (Fig. 4c–d) visualizing the new box seeding
method and the ensuing segmentation fields. The segmenta-
tion masks produced are markedly different between Fig. 4b
and d, with there being clear examples of misattributed seg-
mentation fields. For example, the cumulonimbus cloud (red
feature) is broken up into multiple segmented regions aris-
ing from the features associated with the altostratus (cyan
and magenta features) and cumulus (orange feature) clouds
located closer to the surface.

Figure 5. Demonstration of 3D segmentation using (a) the original
“column” versus (b) the “box” seeding method, showing the differ-
ences in output produced by the different methods. The 3D feature
detection was performed on LES numerical model vertical veloc-
ity data from the Regional Atmospheric Modeling System (RAMS)
v.6.2.14, with segmentation being performed on the corresponding
model total condensate field. Segmentation in panel (b) used a uni-
form box seed size of 5 in x, y, and z.

A further example of this procedure using LES model data
is seen in Fig. 5: Fig. 5a shows the segmentation mask vol-
ume produced via column seeding, while Fig. 5b’s segmen-
tation mask was produced by box seeding covering 5× 5×
5 grid points. The segmentation mask in Fig. 5a exhibits
anomalous grid points extending up and down from the main
volume, including a disconnected region of points about 1 km
above the rest of the mask, which are unphysical and do not
manifest in the box-seeded mask seen in Fig. 5b. Since min-
imizing user effort for objective analysis is one of the key
motivators for the development of tobac and other compara-
ble tools, use of the box seeding approach is a better approach
when users have the choice to do so. This benefits the science
itself by making analyses more consistent and less subjective
and also permits layered feature detection and segmentation.
However, since 3D data are not always available and the box
method may not be strictly necessary for every case when
it is available, we allow users to choose between the older
column seeding method and the new box seeding method.

Finally, the 3D modifications to tracking are more com-
parable to those seen for feature detection than segmenta-
tion but include similarly powerful advances to both of these
components. Since tracking in tobac is largely processed us-
ing Trackpy functions, we leveraged the pre-existing Trackpy
framework to perform 3D tracking, thereby keeping results
both internally consistent and enabling the use of the same
general methodology, regardless of whether the user is track-
ing on 2D or 3D data. Further, our implementation of 3D
tracking in tobac v1.5 allows users to track on data in 3D
with irregularly spaced vertical grids (e.g. stretched model
grids) without requiring the user to re-grid the data. Figure 6
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illustrates the use of 3D tracking on NEXRAD radar reflec-
tivity data. In these data, a convective core that tilts with
height is detected and tracked, showing the movement of fea-
ture position in both horizontal space (Fig. 6a–c) and vertical
space (Fig. 6d–f). Since the feature tilts from west to east
with height, the actual 3D centroid appears to be misplaced
in the 2 km a.g.l. plan view (Fig. 6a–c), but the vertical cross-
section (Fig. 6d–f) indicates that our detected feature cen-
troid is indeed located here in 2D projected space due to its
centre being at roughly 4 km a.g.l. Thus, identifying the cen-
tres of such features and discretizing associated data fields
are much more realistic with 3D feature detection and box
seeding, respectively. As tracking brings temporal evolution
into feature analyses, incorporating the vertical dimension
further expands these capabilities by allowing users to as-
sess the change in vertical position over time instead of just
the horizontal projected position. For cases where the fea-
tures of interest are known to exhibit vertical movement as
part of their evolution – such as the growth and decay of con-
vective clouds, the development of cold pools and hail cores
in thunderstorms, and mechanical lofting of aerosols such as
dust or pollen – the importance of including this dimension
is essential in feature assessments over their life cycles.

3.2 Cell splits and mergers

Another key scientific improvement made in this version of
tobac was the introduction of a procedure for the handling
of cell splits and mergers. Splits and mergers are common in
atmospheric phenomena: convective storms frequently split
into distinct cells (e.g. Newton and Katz, 1958; Charba and
Sasaki, 1971; Klemp and Wilhelmson, 1978; Bluestein et
al., 1990), aggregation of convection has been studied exten-
sively over the past several decades (e.g. Malkus and Scorer,
1955; Masunaga et al., 2021), aerosol plumes and layers
can split into discrete concentrated regions (e.g. Simpson et
al., 2003), and even synoptic-scale troughs are understood
to merge under specific conditions (e.g. Gaza and Bosart,
1990). These examples are just a few of the many processes
involving splits and mergers in the atmosphere, and thus
there is a clear need for splits and merger processing within
tobac.

While there is a critical need for representing splits and
mergers within tobac, the actual implementation of such pro-
cessing is a complex endeavour that frequently depends on
the type of object being tracked. The detection and definition
of split and merger events in meteorological features can be
highly sensitive to various factors such as the time interval
between observations, the velocity and size of the objects,
and their evolution over time. One significant challenge in
detecting these events is the sensitivity to the number of ob-
jects in the search region and the initial detection criteria,
such as thresholding, which can result in “jumping errors”
(Lakshmanan and Smith, 2010). In general, for larger objects
whose displacements are comparable to their size, the over-

lapping criteria is considered to be more reliable for detect-
ing merge and split events as it results in fewer false alarms
(Westcott, 1984; Zan et al., 2019; Raut et al., 2021). How-
ever, this method can miss events with rapidly evolving sys-
tems and longer time intervals between observations (Núñez
Ocasio et al., 2020). Another popular method is to predict
the object centre and estimate the best track by selecting
the shortest, and thus most likely, path (Dixon and Weiner,
1993). It is important to consider the trade-offs and limita-
tions of each method depending on the specific application
and data being used.

There are a number of existing tools with split and
merge capabilities. The TITAN framework of Dixon and
Weiner (1993) makes 2D or 3D determinations of splits and
mergers of storm tracks using a combination of reflectivity-
based detections and comparisons of path lengths between
storms identified in one frame versus the next. Gambheer
and Bhat (2000) took a simpler approach that utilized the
storm centroid positions, storm area, and associated radii to
determine tracks, splits and mergers. The tracking algorithm
developed by Hu et al. (2019) was designed for use with ob-
served radar echoes and includes very innovative techniques
for identification of storm splits and mergers by detecting and
tracking maxima in vertically integrated liquid derived from
radar volume scans. The Hu et al. (2019) technique can be
used with a variety of systems: isolated warm-phase convec-
tive cells, isolated mixed-phase convective cells, and multi-
cellular convective storms. Núñez Ocasio et al. (2020) de-
veloped the Tracking Algorithm for Mesoscale Convective
Systems (TAMS), which builds on prior work by utilizing a
combination of previously developed techniques such as area
overlapping (which has also been used more recently, e.g. by
Feng et al., 2023), Lagrangian centroid projection, and the
use of climatological data on mesoscale convective system
(MCS) propagation speed to account for splits and mergers
when tracking these large systems. However, similar to the
supercell tracking approach of Gropp and Davenport (2021),
most of these tools were designed to be applied to specific
phenomena and are not readily adaptable to other scenarios.
The area-overlapping approach, which was also used in the
tool developed by Feng et al. (2023), also requires a high
temporal resolution and precludes the use of data with time
increments too coarse for features to spatiotemporally over-
lap. Thus, as we introduce the split and merge addition to
tobac (which is compatible with the 3D improvements pre-
sented in Sect. 3.1), we will discuss both the split and merge
algorithm procedure and the object- and storm-specific con-
siderations in the context of the algorithm’s tuneable param-
eters.

The splitting and merging procedure included in tobac
v1.5 behaves as an independent post-processing step within
the tracking module that users can execute after the initial
linking of features into time-continuous cells. Recall that
cells are defined here as features that are linked together
across continuous time steps and thus cannot be identified
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Figure 6. Demonstration of 3D tracking in tobac on NEXRAD radar reflectivity data. The top row shows the plan view in latitude–longitude
space, while the bottom row consists of latitude–altitude cross-sections corresponding to each of the times presented in the plan view above
– thus, (a) and (e), (b) and (f), (c) and (g), and (d) and (h) are all pairs. The red dot shows the present feature location, while the red line
trailing behind it shows the detected track.

from just a single time step of features. As input, this pro-
cedure requires the both the individual features and the cells
present at a single time. Connectivity trees are used to es-
tablish which cells are candidates for mergers or splits with
one another. First, parent branches, which in this case serve
as tracks, are constructed from the different cells, with each
cell and feature being associated with a single parent track.
This association is performed using a minimum Euclidean
distance spanning tree (MEDST), which is a method of con-
necting pairs of points that minimizes the distance in Eu-
clidean space along a tree connecting these points. These
sets of points are then connected using Kruskal’s algorithm
(Kruskal, 1956), which is implemented here via the open-
source Python package NetworkX (Hagberg et al., 2008,
2023). We demonstrate this via a generalized depiction of
Kruskal’s algorithm in Fig. 7. Here, we start with a web of
points (Fig. 7a), from which we progressively identify the
shortest distances between two unconnected vertices that do
not form a loop (Fig. 7b–i). Once all such segments have
been accounted for, the remaining tree of points (Fig. 7j) is
our MEDST. In the context of tobac, the specific points con-
nected by the algorithm follow a “tail-to-tip” method: the al-
gorithm works by linking the last feature of a cell to the first
feature of a nearby cell. We take the last feature of all cells,
and then find the distance between each last feature and each
initial feature within a user-set number of time steps (the de-
fault value is 5) for all time steps. This distance is the weight
of the branches in the MEDST. Before further processing
these paired points (i.e. the location of the last feature in a
cell and the additional feature in another cell), we eliminate
sets of points which are too far apart in time, too far apart
in space, and those that belong to the same cell. Implement-
ing these basic limitations as a part of this procedure ensures

that connected features are close in time and space and do
not split or merge with themselves.

Pruning the MEDST results in sub-trees that correspond to
the parent tracks of each cell. Each parent track includes one
or more associated cells, so that the number of cells is al-
ways equal to or greater than the number of parent tracks.
Each parent track is assigned a unique integer ID, which
is recorded as the parent of each cell in the cell output
DataFrame. Since each feature is also associated with a cell,
they are implicitly assigned a parent track ID. Further pro-
cessing of each parent track can be performed to calculate
summary properties such as the number of child cells, the
total track length across all cell tracks, the track duration be-
tween the first and last feature, and other characteristics of in-
terest. With these new capabilities, tobac can now be used to
analyse metrics such as the aggregation or splitting of cloud
systems (e.g. convective aggregation and supercell splitting
into left movers and right movers, respectively); the initiation
of discrete convective updraughts due to mechanical or ther-
modynamic forcing along outflow boundaries; and construc-
tive and destructive interaction of atmospheric waves that it
could not quantify without this framework.

Following our explanation of how the procedure works,
we demonstrate its conceptual use in Fig. 8. Here, three dif-
ferent cells have been identified from a number of features
exceeding 15 dBZ. At time t2, the feature in cell 1 is identi-
fied to also be the spatiotemporal progression of the feature
of cell 2 at time t2. Thus, the merging criteria are met and
cell 1 and cell 2 are found to have merged. In contrast, cell 3
stays a distance from the other two cells and is not found to
have met the merging criteria with other cells at any point. In
Fig. 9, we demonstrate the procedure in use on real MRMS
(multi-radar multi-sensor) hourly composite reflectivity data
and have detected a split occurring during the evolution of
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Figure 7. A general depiction of Kruskal’s algorithm (Kruskal,
1956) used to construct the minimum Euclidean distance span-
ning tree (MEDST) for splits and mergers. This illustrates the basic
MEDST procedure without consideration for cell start or end points.
Panel (a) shows a web of points connected by edges from which we
want to identify the MEDST. In each panel from (b) to (i), the short-
est edge which has not already been highlighted and does not form
a loop between previously connected points is highlighted in red.
Panel (j) illustrates the final MEDST produced from this web of
points and edges, after pruning the non-highlighted edges.

a convective cell. When the proper considerations with the
splits and mergers tool are taken, the scientific analyses it
enables greatly broaden the capabilities of tobac.

3.3 Spectral filtering tool

In addition to the scientific benefits of expanding the di-
mensionality of tobac and enabling it to process splits and
mergers of tracked objects, the addition of new data pro-
cessing tools also expands scientific utility. While tobac v1.2

Figure 8. An illustration of merging cells (cells 1 and 2) and a stan-
dalone cell (cell 3) as perceived by tobac. All three cells are com-
prised of features in radar data which exceeded a 15 dBZ threshold.
Merging criteria (size and proximity) for the “tail” of cell 1 and
“tip” of cell 2 are met at time t2; thus, these cells are judged to have
merged over their lifetimes.

already included some methods for smoothing of data, cer-
tain observational and model fields may still be too noisy
for these pre-existing tools to be useful (i.e. environmental
noise that hides the presence of contiguous features), mak-
ing the use of feature detection and other tobac procedures
more challenging without additional data processing meth-
ods. In order to streamline working with such data, a new
spectral filtering tool has been incorporated into tobac as part
of the v1.5 update. This tool is designed to facilitate the iden-
tification of phenomena at specific spatial scales (e.g. the
Madden–Julian oscillation (MJO), equatorial waves, atmo-
spheric rivers, mesoscale vortices) and to remove small-scale
noise in high-resolution data. For example, with the MJO,
sub-mesoscale wind fluctuations might obscure the overall
propagation of the convectively active envelope.

The spectral filtering tool works by first performing a dis-
crete cosine transform (DCT) on 2D atmospheric fields, rep-
resenting them in spectral space as a sum of cosine func-
tions with different frequencies (Denis et al., 2002). This ap-
proach allows for the robust isolation of specific frequencies
that correspond to phenomena of interest from the dataset.
The resulting spectral coefficients correspond to normalized
wavenumbers that can be converted to actual wavelengths,
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Figure 9. MRMS (multi-radar multi-sensor) hourly maximum composite reflectivity data depicting a splitting convective system near the
Texas–Oklahoma border on 31 March 2018. The left column depicts the MRMS data, while the right column depicts MRMS data overlaid
with detected features (coloured dots), segmentation masks (white outlines), tracked cells (black lines), and cell and parent track labels (black
and white numbers, respectively). Cell track 1038 (parent track 8) does not meet the split or merge criteria with cell tracks 1037 or 1115
(parent track 7), whereas cells 1037 and 1115 are determined to have split from one another. Feature detection was thresholded on 40 (yellow
dot), 50 (red dot), and 60 dBZ (magenta dot). Segmentation was thresholded on 20 dBZ, and tracking restricted features in adjacent temporal
frames to a maximum estimated velocity of 15 m s−1.

which are then used in the construction of a bandpass filter
that has the same shape as these spectral coefficients in wave-
length and wavenumber space. The bandpass filter can be
constructed to be low-pass, high-pass, or a different configu-
ration. Multiplying this filter with the spectral coefficients re-
moves wavelengths outside of the user-specified band, which
can then be converted back to the original domain via inverse
DCT. A visualization of atmospheric data and the spectral el-
ements used for filtering are demonstrated in Figs. 10 and 11.

Figure 10a displays the initial 2D input field (here, a WRF
relative vorticity dataset), Fig. 10b illustrates the transforma-
tion of the data in Fig. 10a to spectral space, and Fig. 10c–
d show the construction of 1D and 2D bandpass filters for
wavelengths between 400 and 1000 km. The results from ap-
plying such filtering to an ERA5 vertically integrated wa-
ter transport dataset and a WRF relative vorticity dataset are
shown in Fig. 11. The original, pre-filtered fields of ERA5
and WRF data, respectively, are illustrated in Fig. 11a and c,
while Fig. 11b and d illustrate the same corresponding fields
after utilization of the filter. It is clear from Fig. 11b and d

that the application of the spectral filtering uncovers large-
scale spatial patterns obscured by fine-scale noise in the orig-
inal data.

This filtering approach can be leveraged to identify a
wide variety of atmospheric phenomena across different spa-
tiotemporal scales and frequencies, such as the many oscilla-
tory phenomena identified in OLR power spectra by Wheeler
and Kiladis (1999). Inclusion of the filtering tool in tobac
v1.5 clearly expands the package’s utility while reducing the
amount of extra work needed for end users to pre-process
data of interest. This technique has previously been used to
identify mesoscale vortices in convective-permitting climate
simulations (e.g. Kukulies et al., 2023).

Overall, the 3D implementation, the splits and mergers
procedure, and the spectral filtering tool comprehensively ad-
dress many needs of the tracking community (as evidenced
by the multitude of tools and capabilities described in the
introduction) and add a great deal of scientific power to to-
bac. These new features expand on the types and dimen-
sionality of contiguous structures that tobac can identify
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Figure 10. Visualization of spectral decomposition of atmospheric input fields and construction of a bandpass filter that can be specified
by the user and is used to filter the input data. (a) Two-dimensional input field with atmospheric data at one time step: hourly relative
vorticity at 500 hPa [105 s−1] of a 4 km WRF simulation over Southeast Asia. (b) The same data after the discrete cosine transformation
(DCT), represented by spectral coefficients as a function of wavelengths in x and y direction. (c) Response of constructed bandpass filter as
a function of wavelength. The two red lines indicate the cut-off wavelengths that can be specified by the user (400 and 1000 km). (d) The
same bandpass filter but in 2D spectral domain with the same shape as (b) but zoomed in to show the filter response for wavelengths between
400 and 1000 km.

within datasets, allowing the tool to be used with more dy-
namically evolving phenomena, and providing an additional
level of filtering to isolate atmospheric phenomena of inter-
est. However, additional improvements of tobac have also
been achieved with the addition of procedural changes such
as code optimization, homogenization of grids for different
data, and treatment of PBCs, all of which are possible in part
due to tobac’s modular nature. These procedural adaptations
are discussed in the following section.

4 tobac v1.5 – procedural improvements

4.1 Code optimization

Several inefficiencies were identified across the body of code
– for example, a loop in the tracking module would iterate a
number of times equal to the square of the number of fea-
tures, as opposed to just the number of features, and alter-
ations were subsequently made to each module to enhance
their overall computational speed. Making these changes led
to speedups on the order of 100× for feature detection and
1000000× or more for tracking. The scaling of these mod-
ules’ speeds as a function of the number of features, a proxy
for data size and complexity, between tobac v1.2 and v1.5

can be seen in Fig. 12, with feature detection in Fig. 12a and
tracking in Fig. 12b. To provide a single example of what
this means from a practical perspective, performing feature
detection on a full day of GOES-16 IR data (1500 by 2500
spatial grid points, 288 time steps) only takes about a minute
of computing time with tobac v1.5, whereas it originally took
around an hour with tobac v1.2 using the same computing
platform. This has significant implications for the tractability
of using tobac v1.5 with larger datasets: analyses on espe-
cially large datasets (10–100 s of TB) that would take weeks
to perform with tobac v1.2 now only take hours to days,
which expedites the research that can be conducted with this
tool.

4.2 Remapping data on different grids

Beyond recognizing that the efficiency of tobac needed to
be improved to make certain analyses tractable from a com-
putational processing point of view, we also understood that
researchers working with data from different sources often
have a need to combine these datasets in some way. This pro-
cess can be complicated by observing platform nuances such
as viewing angle and field of view; temporal frequency; spa-
tial resolution; and the dynamic range of the data. Issues such
as differing fields of view and spatial resolution have partic-
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Figure 11. Examples for hourly atmospheric input fields (a, c) and their corresponding spectrally filtered fields (b, d). (a) Vertically integrated
water vapour transport (IVT) [kg m−1 s−1] from ERA5 at 27 January 2021 10:00:00 UTC showing an atmospheric river over the San
Francisco Bay area. (b) The same as in (a) but spectrally filtered for wavelengths >1000 km. (c) Relative vorticity at 500 hPa [105 s−1] from
a WRF simulation with 4 km grid spacing over Southeast Asia for 18 July 2008 05:00:00 UTC (when Typhoon Kalmaegi hit Taiwan). (d)
Same as in (c) but spectrally filtered for wavelengths between 400 and 1000 km. Note that the typhoon over Taiwan only becomes visible in
the vorticity field after the filtering has been applied because the original vorticity field is dominated by sub-mesoscale noise.

Figure 12. A benchmark comparison of tobac speed between version 1.2 (Heikenfeld et al., 2019) and version 1.5, demonstrating the increase
in speed using a full day of GOES-16 Channel 10 IR imagery from 12 June 2021 on (a) feature detection, with number of features on the
abscissa and time taken to run feature detection on the ordinate. Panel (b) is the same as (a) but for tracking.

ularly strong implications for the uses of objective analysis
tools like tobac due to the projection of data onto different
spatial grids. Within the framework of tobac, we have in-
troduced a new function that allows for the combination of
datasets (both modelled, both observational, or a mix of the
two) so that tobac can be more easily used with a combina-
tion of different datasets and types.

This new remapping tool allows for the user to identify
features and track on one dataset on one grid (e.g. ground-

based radar), and then identify the spatial extent of the fea-
tures via tobac’s segmentation routines on a different dataset
on a different grid (e.g. satellite). Instead of regridding the
data internally, this tool instead remaps the feature centroids
identified by feature detection onto the new grid, allowing
segmentation to proceed as normal at the full resolution of
the new grid. To perform this, tobac uses the latitude and lon-
gitude of each identified feature point, then employs a Ball
Tree (using the scikit-learn package; Pedregosa et al., 2011;
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Grisel et al. 2023) to find the closest point in space to the
identified feature location on the new grid. Once this is com-
plete, the user can perform segmentation as normal on the
new grid.

One case for the use of the remapping tool is in observa-
tional analysis of convection via radar and satellite datasets,
which we demonstrate in Fig. 13. Features detected from
NEXRAD reflectivity data exceeding a 30 dBZ threshold are
shown in Fig. 13a. These features are then used as markers
to segment a GOES-16 satellite-observed brightness temper-
ature dataset, pictured in Fig. 13b. The satellite brightness
temperature data have been remapped to the same grid as the
radar data (not incorporating parallax effects) prior to per-
forming the segmentation process, so that features are cor-
rectly located within the segmentation field of interest. Ulti-
mately, the segmentation outlines shown in Fig. 13b depict
the anvils corresponding to each marked radar reflectivity
feature.

4.3 PBC (periodic boundary condition) treatments

Idealized numerical models and LES often utilize PBCs in
order to isolate simulations from external forcings and re-
duce the influence of the lateral model boundaries on the
simulation behaviour. With PBCs, phenomena flowing out of
one end of the model boundary simply re-enter the domain at
the opposite boundary for that dimension. However, v1.2 of
tobac did not have any capabilities for recognizing the con-
tinuity of features, segmentation masks, or cell tracks that
passed through boundaries or were split into multiple parts
by boundaries, and the code base required these improve-
ments for use with model configurations including PBCs in
one or both lateral dimensions.

Most of the changes needed for PBC treatments in feature
detection lie within the identification of contiguous regions
separated by an artificial boundary and the positioning of fea-
tures which exist across both sides of a boundary. In the orig-
inal v1.2 procedure, a failure to recognize when contiguous
fields are split by artificial model boundaries leads to an erro-
neous multiplication of detected features at these boundaries,
which further cascades into unphysical segmentation fields
and cell tracks. A depiction of PBC feature detection with to-
bac v1.2 and tobac v1.5 being performed on an LES model
2D column maximum vertical velocity field can be seen in
Fig. 14. Figure 14a shows the overall data field (with values
less than 0.5 m s−1 masked in grey), and Fig. 14b visualizes
the initial field of labelled regions identified at a 0.5 m s−1

threshold prior to utilizing our PBC treatment. Figure 14b
contains a total of six different regions due to the multiple
boundary crossings exhibited by this vertical velocity field
and would produce six different features (instead of the sin-
gular feature that it is) if a PBC treatment was not applied.
After performing the new PBC treatment, which overwrites
the labelled fields, the resulting unified label can be seen in
Fig. 14c, which correctly identifies the object as a single fea-

ture. Utilizing the PBC treatment in the zonal direction also
facilitates the use of tobac with some global model and ob-
servational datasets and represents the first steps towards en-
abling global tracking. The PBC treatment for segmentation
largely follows the same principles as that for feature detec-
tion, except it requires adjustments, rather than complete uni-
fications, to be performed when segmentation masks collide
at a model boundary. Beyond these, the PBC procedures for
feature detection and segmentation are quite similar.

The tracking procedure for PBCs differs from that for both
feature detection and segmentation due to the key purpose
of the PBC treatment being to link cell tracks that already
exist. Provided that one has performed the PBC treatment
within feature detection, propagating features will be cross-
ing boundaries in a smooth manner without the introduction
of specious features. An example of the PBC tracking ap-
proach can be seen in Fig. 15: Fig. 15a displays the erroneous
recognition of two distinct cell tracks from an evolving fea-
ture crossing the periodic boundary, while Fig. 15b shows
the correct identification of a single cell track with the PBC
tracking approach. This new capability enables a much more
robust assessment of cloud lifecycles and other such tem-
poral processes in models with PBCs that would otherwise
produce a disjoint or garbled picture with non-PBC tracking.
This becomes increasingly important with smaller domains
where boundary crossings are more frequent. As discussed
above in relation to feature detection, this PBC code is an
important step towards the implementation of global feature
detection, segmentation, and tracking in tobac. At present,
cylindrical (zonal) global tracking (which can be used on
Global Precipitation Mission data, for example) is enabled
within this framework, but features near or crossing over the
poles are still an issue that must be addressed in future ver-
sions of this package.

5 Summary and conclusions

Our overall goals for the improvements to tobac detailed
within this paper were to enhance the package’s scientific ca-
pabilities and utility, improve its efficiency, and incorporate
new tools for data processing and more complex analyses.
The inclusion of these changes in tobac v1.5, as well as the
previously existing flexibility and modularity of tobac v1.2
and its variable- and grid-agnostic (i.e. capable of working
on any gridded dataset) nature, make tobac simultaneously
one of the most powerful and malleable objective analysis
tools that presently exist in our field.

From a scientific point of view, the inclusion of the vertical
dimension in tobac v1.5 allows for identification, discretiza-
tion, and tracking of more complex and multidimensional
meteorological structures, which could not be performed in
tobac v1.2. It also allows users to better capture the spa-
tiotemporal evolution of clustered phenomena that are diffi-
cult to isolate in 2D projections of 3D data. Further, the pro-
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Figure 13. A depiction of the output from the new procedure for differently gridded data included in tobac v1.5. Panel (a) shows NEXRAD
radar reflectivity in dBZ from the Goodland, KS, site at 15:56 UTC on 26 May 2021, as well as the associated features detected at a 30 dBZ
threshold marked by coloured dots which represent different convective cores. Panel (b) shows GOES-16 satellite-observed brightness
temperature in K (initially on a different grid from the radar data), as well as the segmentation masks associated with each of these features
as differently coloured outlines. The segmentation outlines shown in panel (b) are produced after regridding the satellite data to the same
grid as the radar data and depict the upper-level cirrus shields associated with the different convective cores seen in the radar data.

Figure 14. Illustration of PBC treatment algorithm for feature detection. Panel (a) shows the original column-maximum vertical velocity
field (values less than 0.5 m s−1 masked). Panel (b) depicts the six individual feature detection labels produced at a 0.5 m s−1 threshold
without the PBC treatment. Panel (c) presents the correct unified label post-treatment for PBCs.

Figure 15. A depiction of 2D tobac tracking with and without ac-
counting for PBCs. Panel (a) shows the two discrete cells that would
be identified by tobac v1.2 when a feature crosses a boundary. Panel
(b) illustrates the single, unified cell that is produced with the PBC
tracking procedure.

cessing of mergers and splits within tobac’s tracking module
greatly enhances the ability to assess the lifecycles of cloud
systems that exhibit such processes, without requiring addi-
tional record-keeping and data processing by the user. The
included spectral filtering tool also improves the scientific
utility of tobac by providing a method for users to isolate
specific frequencies of interest in the data they are using,
precluding the need for external data processing or the use
of datasets that have already been smoothed.

The procedural enhancements made to tobac as a part of
v1.5 have also led to a vast expansion in the capabilities
of this package. First and arguably foremost, the computa-
tional efficiency improvements, ranging from 100× to over
1000000× increases in processing speed depending on the
module being used and the nature of the data being analysed,
allow users to conduct analyses in far less time than was
possible before. Such efficiency improvements allow users
to leverage higher-resolution data and overall larger datasets
than tobac could reasonably manage previously. The data re-
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gridding procedures that are now included also enable the
combined use of multiple different datasets existing on dif-
ferent grids. New applications that this procedure enables
include tracking convective cores on radar while simultane-
ously identifying anvil regions with satellite data and com-
paring modelled lofting of dust in haboob events with satel-
lite observations of the overall dust outflow. Finally, adding
the capability to recognize and robustly address PBCs has
also widened the utility of tobac by enabling its use with
applicable model data. PBCs are commonly used in ideal-
ized and LES models, which would be prime candidates to
analyse using the older tobac v1.2 if they did not have these
boundary conditions.

Although we have made many modifications to the tobac
code base as a part of v1.5, future updates are already be-
ing developed as part of the next major release, tobac v2,
and an active, international community of developers con-
tinue to maintain its code base. One key element planned for
the next major release includes integration with the TiNT
is not TITAN (TiNT; Raut et al., 2021) tracking package.
We are also seeking to transition away from tobac’s current
memory-intensive data structures to data structures that al-
low for out-of-memory computation instead (e.g. Dask from
Rocklin, 2015; xarray from Hoyer and Hamman, 2017). The
overarching vision for tobac v2 is, at present, to continue de-
velopment and enable better support for Big Data use cases,
as well as to move towards data structures that support paral-
lelization for more memory-intensive datasets.
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Appendix A

We provide an additional figure (Fig. A1) illustrating the split
and merge tool’s performance on a merger occurring within
NEXRAD radar data.

Figure A1. A visualization of four frames (a–d) of a tobac-tracked and detected merger from the KHTX NEXRAD radar site at 19:19:03 to
19:32:15 Z on 30 April 2016. The cell number is given in red, the parent track ID is in blue, and the feature locations at the present time step
are marked with dots in each panel. Initially, cells 528 and 555 are both present (a). However, over the course of their evolution, the tracks
can be seen to merge together (b–c) as parent track 155, with cell 528 no longer existing in (d).
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Appendix B

Treatment of periodic boundary conditions (PBCs) within
tobac was a complex undertaking which required different
approaches for each of feature detection, segmentation, and
tracking. Once labelling of data fields is performed during the
feature detection treatment, the PBC routine “looks” across
one or both model boundaries to see if there are any labelled
regions that are contiguous but artificially separated by the
model boundaries. Overwriting of labels in eligible data re-
gions is performed continuously until all contiguous data re-
gions have their own discrete label. Tracking handles PBCs
by implementing a custom distance function that removes the
“wrap-around” distances found across these boundaries.

The PBC treatment for segmentation is more complex. We
provide an illustration of two particular use cases the treat-
ment has been designed to address in Fig. B1. The sim-
plest case occurs when a segmentation field on one side of
a boundary has been marked and watershed, but the same
contiguous field on the other side of that boundary has not
(the magenta and white shapes in Fig. B1a). Here, we simply
assign the same label to the unlabelled region as that which
has already been watershed (Fig. B1b–c).

For cases when two or more labelled segmentation re-
gions meet at a model boundary (the blue and red shapes
in Fig. B1a), a new sub-domain (the dashed orange out-
line, which we refer to as a “Buddy Box” in this figure and
our source code) is constructed of only the grid cells cor-
responding to these segmentation regions but with all artifi-
cial boundaries removed so the fields are continuous. Then,
markers are placed again (Fig. B1d) and watershed segmen-
tation is performed on this new sub-domain (Fig. B1e). The
segmentation boundaries ensuing from this procedure are
then adapted back to the original segmentation field before
PBC treatment, as shown in Fig. B1f.

Figure B1. A depiction of two elements of the PBC segmentation
treatment. In panel (a), we have two sets of regions (the red and blue
shapes in one set and the magenta and white shapes in the other) that
are artificially separated by a model boundary. The white shape in
panel (a) is “eligible but unseeded”, meaning it exceeds the seg-
mentation magnitude threshold but did not have a marker placed
within it to conduct watershedding. Since the magenta shape is in
contact with this shape across the model boundary, we first seed
all adjacent boundary points (as depicted in panel b) and then use
these to watershed the relevant “eligible but unseeded points” as
shown in panel (c). The red and blue shapes shown in panel (a)
have both been watershed by different feature markers but are arti-
ficially separated by the model boundary. This necessitates the se-
lection of these two shapes into their own contiguous domain (the
dashed orange “Buddy Box” depicted in panels c–f) so that water-
shedding can be performed again to obtain the correct segmentation
boundaries. After transforming these grid points and their included
data into the Buddy Box domain as shown in panel (d), we place
our feature markers (the red and blue boxes with black outlines) in
the domain and perform watershedding again, as shown in Panel
(e). Subsequent to the Buddy Box watershedding, the correct seg-
mentation regions are transformed back into the original domain,
as shown in Panel (f). Boxes with bright colours and black outlines
depict the feature markers used for watershedding, the paler corre-
sponding colours denote the regions segmented by these markers
through watershedding, the white boxes denote “eligible but un-
seeded” regions (i.e. above the segmentation magnitude threshold
but not marked by a feature), and the gray boxes denote regions that
are beneath the magnitude threshold and are not eligible to undergo
watershedding.

Geosci. Model Dev., 17, 5309–5330, 2024 https://doi.org/10.5194/gmd-17-5309-2024



G. A. Sokolowsky et al.: tobac v1.5 5327

Code and data availability. The source code for the tobac v1.5
package is available on GitHub at https://github.com/tobac-project/
tobac (last access: July 2023) and on Zenodo at https://doi.org/10.
5281/zenodo.8164675 (tobac Community et al., 2023). All exam-
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