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Abstract Quantifying horizontal spatial variability in high-resolution simulated convective environments is
key to improving parameterizations for coarser models, accurately comparing models and observations, and
understanding the physical processes driving this variability. Here, we characterize horizontal spatial variability
in a large sample of simulated tropical and subtropical convective environments using structure functions. Near
the surface, horizontal wind is spatially rougher (smaller decorrelation lengths) than moisture and temperature
over land for length scales between 10 and 100 km. At 500 hPa, tropical oceanic convective environments
display smoother moisture fields compared to temperature and wind at the same scales. Besides roughness, we
also compute absolute magnitudes of variability at different length scales. Across simulations, tropical oceanic
environments show the smallest magnitudes of surface temperature and moisture variability. However, at
500 hPa, the tropical oceanic simulations show greater moisture variability magnitudes compared to land cases,
suggesting the influence of strong, large-scale moisture gradients over tropical oceans.

Plain Language Summary The spatial variability of storm environments in weather and climate
models can strongly affect short-term predictability of thunderstorms as well as climate projections. Here, we
analyze how environmental temperature, moisture, wind, instability, and surface heat and moisture exchange,
vary across space using high-resolution simulations of tropical and subtropical storms. We use statistical tools to
measure the texture of these fields (how smooth or rough these fields are and hence how gently or abruptly they
change in space) at different heights in the atmosphere and in different environments. We find that the surface
wind field has a more uneven texture than temperature and moisture over land. The absolute magnitude of mid-
level moisture variability is greater over tropical oceans than over land for a large range of length scales. Some
surface variables show distinct spatial patterns tied to local features like terrain. These differences mean that a
one-size-fits-all model resolution will not work for all variables. Our results can help improve weather models
and observing systems by showing how to represent smaller-scale variability when it can't be directly resolved
and by estimating how far apart should we place our instruments in the field to sufficiently capture the details of
a given variable.

1. Introduction

Depending on the spatial resolution and area, a scene containing deep moist convection could contain spatial
scales of variability corresponding to planetary boundary layer circulations, storm updrafts, cold pools, gravity
waves, meso- and synoptic-scale boundaries, amongst other features (Fabry, 2006; Kiemle et al., 2017; Naumann
& Kiemle, 2020; Smith et al., 2005). Quantifying the variability in simulated or observed geophysical fields as a
function of distance is important for several reasons. First, poor representation of the sub-grid scale variability in
thermodynamic variables can lead to errors in the initiation and growth of deep convection, negatively affecting
short-term predictability and climate projections (e.g., Tompkins, 2002; Tompkins & Berner, 2008; Zhang
etal., 2003). Knowledge of the scaling behavior of sub-grid variability is also essential for developing scale-aware
and stochastic parameterizations (Berner et al., 2017; Schemann et al., 2013). Second, knowing how rapidly a
convective environment changes from one location to another can help estimate the appropriate density of
measurements necessary in the field (e.g., Madaus & Hakim, 2016). Relatedly, it can assist in better gauging the
error when ascribing environmental profiles to storms. This is important as many idealized studies initiate
convection in homogenous environments using a single sounding. Third, the scales of variability serve as useful
diagnostics when comparing model output with other models or observations (Freischem et al., 2024; Grant
etal., 2024; Kahn et al., 2011; Marzban & Sandgathe, 2009; Selz et al., 2017). Finally, quantifying the patterns of
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variability across convective environments can help to identify potential universal scalings (Tsonis et al., 1999)
and understand the physical processes driving this variability.

Several studies have characterized spatial variability in moisture and temperature using both observations and
numerical simulations (e.g., Davison et al., 2013; Kahn et al., 2011; Kiemle et al., 2017; Sherwood, 1996; Stevens
et al., 2019). Kiemle et al. (2017) used lidar data over the wintertime tropical Atlantic Ocean around Barbados to
show that dominant length scales of variability for humidity are between 300 and 600 km in the shallow cloud and
marine boundary layers. They attributed this variability to the convective redistribution of moisture. They also
noted that scaling exponents near the base of the subsidence inversion show breaks on the order of 10-30 km,
suggesting a complex spatial structure of the water vapor field. More recently, P. J. Marinescu et al. (2024) used
high-resolution numerical simulations to show that significant sub-grid variability exists at typical reanalysis grid
spacing lengths, and that surface winds, convective available potential energy (CAPE), and mid-level moisture
are the most variable among the convective parameters they tested.

Prior studies were often restricted to a small set of convective environments or a small range of length scales. This
study aims to characterize the scale dependence of horizontal variability in simulated convective environments
spanning convective morphologies from scattered thunderstorms to mesoscale convective systems, throughout
the tropics and subtropics. These simulations have been conducted in support of the National Aeronautics and
Space Administration (NASA) Investigation of Convective Updrafts (INCUS) mission (Dolan et al., 2023;
Prasanth et al., 2023; van den Heever, 2021). We use structure functions and variograms to address two primary
questions:

1. How do the patterns and magnitudes of spatial variability of moisture, temperature, winds, surface fluxes and
CAPE differ (a) amongst the variables, (b) between maritime and continental convective environments, and (c)
between tropical and subtropical convective environments in high-resolution numerical simulations?

2. What are the predominant length scales of variability for these simulated environmental variables?

2. Methods
2.1. Numerical Simulations

The simulations analyzed in this study are conducted with the Regional Atmospheric Modeling System (RAMS,
Cotton et al., 2003; Saleeby & van den Heever, 2013; van den Heever et al., 2023). The outermost grids (G1) of all
simulations have a horizontal grid spacing of 1.6 km and 232 vertical levels, with a maximum vertical grid
spacing of 125 m. Additional details about the model setup are given in P. J. Marinescu et al. (2024). Figure 1
shows examples of the near-surface water vapor mixing ratios at one time for all the simulations, along with a
characterization of the simulated convective morphology and environment. While these simulations include two
additional one-way nested grids, here we only analyze the largest grid (G1) to quantify variability across a wider
range of length scales. The size of G1 varies from 784 x 784 km? for the Argentina simulations (Figures 1j and 1k)
102,222 X 1,667 km? for the Brazil simulations (Figures 1g and 1h). Table S1 in Supporting Information S1 shows
the names of the simulations, their grid sizes, and dominant convective morphologies. While this study focuses on
the RAMS model simulations, we also simulated these cases with the Weather Research and Forecasting (WRF,
Skamarock et al., 2019) model with two different microphysics schemes. The results presented in this paper are
consistent across all three modeling frameworks (see Supporting Information S1).

2.2. Quantifying Horizontal Spatial Variability: Structure Functions and Variograms

Figures 2a and 2b show two fields with different spatial textures: field B is smoother than field A. However, both
fields have the same mean (¢ = 0) and variance (6> = 0.25), precluding us from using variance or standard
deviation to contrast their spatial structure. Instead, we use structure functions to quantify the spatial variability in
these fields. The gth-order structure function (S‘;) for a two-dimensional field f(x) is estimated by computing the
average of the gth power of the magnitude of difference of values (hereafter called increments) for all pairs of
points separated by some distance, d (called spatial lag or lag distance), that is,
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Water Vapor Mixing Ratio at the Lowest Model Level (kg/kg) for G1
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Figure 1. The horizontal structure of water vapor mixing ratio varies across convective regimes and tropical and subtropical regions. Shown here are examples of the
water vapor mixing ratios (kg/kg) at the lowest model level at one time for the simulations used in this study. The 500-m terrain height contour is shown in brown.
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Figure 2. (a, b) Two fields with the same mean (4 = 0) and variance (6> = 0.25). Note the difference in the texture of the two
fields; field B is much smoother than field A. (c, d) First-order structure functions (SF) and variograms versus spatial lag
(km) for fields A and B, respectively. (e, f) As in (c, d), respectively, but in log-log space; linear regression fits to the
variograms and first-order SF along with the slopes of the fitted lines are also shown.
Here, N is the number of pairs of points separated by lag distance d. Figures 2¢ and 2d show first-order structure
function and variograms (which are simply second-order structure functions divided by 2) for fields A and B,
respectively. Both the first-order structure function (¢ = 1) and the variogram (g = 2) provide a statistical measure
of how the similarity between two points in the domain changes as the distance between them increases. For
detailed definitions of structure functions and variograms, please refer to Sections S1.1 and S1.2 in Supporting
Information S1, respectively.
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For field A, both the first-order structure function and the variogram are essentially constant with lag distance
(Figure 2c). For field B, however, the first-order structure function and variogram (Figure 2d) look quite different;
these curves, representing the magnitude of variability at a given spatial scale, first rise and then plateau after
~30 km. This points to the predominance of features of size ~30 km in field B. The lag distance at which a
variogram levels off is referred to as the variogram range (~30 km in this case), and the value it attains as it levels
off is called its sill (0.25 in this case; the sill of the variogram approaches variance under some assumptions).
Figures 2e and 2f show linear regression fits in log-log space to the structure functions and variograms for fields A
and B, respectively. The slopes of these linear fits, also called structure function exponents, condense the in-
formation in the curve across multiple lag distances into one scalar. {;, the slope of the first-order structure
function, is an approximation of the Hurst exponent (Hurst, 1956) and characterizes the texture (rough or smooth)
of the data; low values of {; imply more texturally rough data, meaning the field changes more abruptly and
frequently over space. {,, the slope of the variogram or second-order structure function (under some assump-
tions), is related to the slope of the power spectrum of the field (Khintchine, 1934; Lewis et al., 2004); large values
of {, (equivalently, steep slopes of the power spectrum) can imply there is little variance at small spatial scales.

Similar to the above example, we compute structure functions for environmental moisture, temperature, and
winds near the surface and at 500 hPa, as well as for surface fluxes and CAPE, from our high-resolution numerical
simulations. These variables were chosen given their significance in determining convective outcomes (e.g.,
Schulte et al., 2024; Storer & Posselt, 2019). Here, the environment at a given altitude is defined as grid points
where total condensate mixing ratio is less than 10™* g/kg; we ignore cloudy points for structure function
computation. Please refer to Section S1.3 in Supporting Information S1 for more details regarding calculations of
structure functions for the environmental grid points. While we estimate structure functions for orders one
through five (Figure S1 in Supporting Information S1), we only present the exponents and curves for the first-
order structure function and variogram as they have more intuitive interpretations. Additionally, while the
magnitudes of the structure functions of different orders differ from each other (Figure S1 in Supporting In-
formation S1), they largely preserve the relative variability across simulations for all spatial scales. We choose
variograms (second-order structure function) as the primary tool for assessing absolute magnitudes of variability
at different scales, making comparisons across simulations, and obtaining characteristic length scales of vari-
ability due to their abundant use in the literature, their straightforward relationship with variance, and the exis-
tence of a variety of theoretical models for retrieval of the variogram ranges (Chiles & Delfiner, 2012).

Thus, we distinguish between two aspects of spatial variability: variability magnitude and roughness. Variability
magnitude for a given spatial scale refers to the absolute strength of spatial increments, quantified by values of the
variogram at that lag distance. In contrast, roughness refers to the scale dependence of those increments, quan-
tified by the slope of the first-order structure function for given range of lag distances. Importantly, these capture
distinct features: a field may have large increments (high variability magnitude) but still be smooth (steep slope),
or it may be jagged or rough (shallow slope) despite smaller overall variability. Moreover, roughness is closely
related to the spatial correlation scale: rougher fields (shallower slopes) tend to correlate over shorter distances,
while smoother fields (steeper slopes) retain spatial coherence over longer distances. We can compare roughness
across different variables because the metric of roughness (the slope of first-order structure function) is
dimensionless. We cannot compare variability magnitudes across variables as they have different units, for
example, g°/kg” versus K.

3. Results and Discussion
3.1. Structure Function Exponent Analysis

Figure 3 shows the first- and second-order structure function exponents for near-surface and 500 hPa environ-
mental water vapor mixing ratio, temperature, and wind speed. We compute these exponents for length scales of
10-100 km, roughly within meso-§ scales. The surface moisture is the roughest in Congo and Brazil1 simulations
(see also Figures 1f and 1g). This makes sense as these simulations feature land environments with daytime
convective boundary layer, heterogenous surface, and scattered, isolated convection. Additionally, in general,
marine tropical convective environments tend to have larger values of {; compared to tropical land environments,
implying smoother surface moisture fields with longer correlation lengths in marine tropical environments.

For all 11 simulations, for surface water vapor, we obtain {; = 0.49 + 0.16 (mean + standard deviation) and
£, = 0.85 = 0.31. The mean ¢, is greater than the theoretical second order exponent (2/3), indicating that there
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Figure 3. Values of first- and second-order structure function exponents for length scales of 10-100 km for water vapor mixing ratio, temperature, and wind speed
(a) near surface and (b) at 500 hPa for all simulations. Italicized labels above the x-axis indicate tropical (7') or subtropical (S) and oceanic (O) or land (L) environments.
Note that some oceanic environments contain land in the domain.

may be loss of variance at small scales in some of the numerical simulations (Kahn et al., 2011; Nastrom
et al., 1986; Tung & Orlando, 2003). Similarly, for water vapor mixing ratios at 500 hPa (free troposphere), we
obtain {; = 0.65 = 0.14 and {, = 1.11 £ 0.3. The 500 hPa water vapor (, is larger than that for the near-surface
values, implying that environmental water vapor has a smoother texture at midlevels than at the surface. These
values are within the range of observations taken in three field campaigns within areas without active convection
(but in the vicinity of convection) in the free troposphere: {; = 0.63 + 0.10 and {, = 1.19 + 0.19 (Table 2 in
Fischer et al. (2013)). While there are caveats to comparing structure function exponents between observations
and simulated data (differing atmospheric regimes, sampling strategies, altitude, etc.), a rudimentary comparison
such as this ensures that the spatial variability in our numerical simulations is within the bounds of observations.

Based on the values of {; in Figure 3a (Figures S2 and S4 in Supporting Information S1 for WRF), surface wind
speed is rougher (shorter correlation lengths) compared to moisture and temperature fields for length scales of 10—
100 km for land environments. However, at 500 hPa, water vapor is the smoothest and temperature field is the
roughest over tropical oceanic convective environments for these length scales. The differing spatial textures and
correlation length scales among variables imply that a model resolution or an observation network sufficient for
capturing one variable, such as near-surface temperature, may be inadequate for others, like near-surface wind
speed. Moreover, the representativeness of a simulated or radiosonde profile of a storm environment varies with
altitude and depends on the specific variable considered.

3.2. Variograms for G1
3.2.1. Water Vapor Mixing Ratio

Figures 4a—4f show the variograms of water vapor mixing ratio, temperature, and wind speed at the surface and
500 hPa. The near-surface water vapor variograms (Figure 4a) are broadly separated into two groups: subtropical
(Argentinal, Argentina2, South_Africa, and Gulf_Coast) and tropical simulations (Congo, Brazill, Brazil2,
Philippines_West, Philippines_East, Western_Pacific, and Australia), with subtropical convective environments
having larger variogram values at all lag distances and hence larger horizontal spatial variability magnitudes than
their tropical counterparts. Among the tropical simulations, entirely marine convective environments (Philip-
pines_East and Western_Pacific) tend to have lower surface moisture variability compared to convective envi-
ronments over land (Brazill, Brazil2, and Congo) for all lag distances. Greater moisture variability over land can
be explained by steeper terrain, topography-related mechanical and thermal circulations, stronger boundary layer
circulations, stronger cold pools, and other land surface inhomogeneities including soil moisture. Figure 4j shows
the ranges of the theoretical variogram models fitted to the empirical variograms shown in Figures 4a—4i. As
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Figure 4. Variograms for water vapor mixing ratio, temperature, and (a—c) wind speed at the surface and at (d—f) 500 hPa; (g—
i) variograms for Maximum convective available potential energy, latent heat flux, and sensible heat flux. (b, e) Note that in
the temperature variograms, the curves for Argentinal and Argentina2 correspond to the brown twin y-axis on the right
(brown). Panel (j) shows length scales of variability (effective variogram ranges, km) for the nine variables for all the
simulations. The circled data points in panel (j) indicate oceanic environments. Note that some simulations contain multiple
length scales of variability for certain variables. Some variograms do not have retrievable length scales associated with them:
the variability keeps increasing with distance.
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mentioned previously, these ranges can be interpreted as the length scales of variability present in these fields. The
length scales of variability in near-surface water vapor vary from about 50 to 300 km for land environments and
400 to 600 km for oceanic environments in our simulations (Figure 4j). These results are similar to Kiemle
et al. (2017), who analyzed water vapor variability in the lowest 4 km of the tropical Atlantic Ocean east of
Barbados and found regions of greater moisture with sizes between 300 and 600 km. We speculate that these
length scales correspond to the redistribution of moisture by large convective systems over oceans, whereas the
shorter length scales over land can be interpreted as scales of variability in convective environments arising from
topographical and other land surface effects.

At 500 hPa (Figure 4d), the subtropical-tropical separation seen in the surface water vapor variograms no longer
exists. In fact, the 500-hPa moisture variability in tropical oceanic environments (Philippines_West, Philip-
pines_East, Western_Pacific, and Australia) generally exceeds that in most tropical and subtropical land simu-
lations over a wide range of length scales, with the two Philippines simulations exhibiting the greatest variability
along all simulations. We speculate that a combination of moisture variability due to detrainment from convection
near the melting layer, as well as moisture gradients associated with gravity waves, equatorial waves, and
monsoonal circulations, might be responsible.

3.2.2. Temperature

For surface temperature (Figure 4b), entirely marine tropical convective environments (Philippines_East and
Western_Pacific) exhibit the least variability at all spatial scales, and subtropical land environments (Argentinal,
Argentina2, and South_Africa) with steeper topography exhibit the greatest variability over a wide range of length
scales. The rest of the environments lie between these two extremes.

At 500 hPa (Figure 4e), the greatest temperature variability still exists in subtropical land simulations, with
variability in the Argentina simulations an order of magnitude larger than other simulations: this is likely a result
of strong synoptic-scale temperature gradients. There is no clear distinction between tropical land and tropical
oceanic convective environments. Additionally, similar to 500 hPa moisture, variability in 500 hPa temperature
for Philippines_West and Philippines_East surpasses the rest of the tropical simulations, especially for scales
larger than 300 km. The two observations are likely related and point toward the presence of large-scale gradients
in temperature and moisture in these simulations.

3.2.3. Wind Speed

Generally, the subtropical continental winds (Argentinal, Argentina2, and South_Africa) show greater variability
at the surface (Figure 4c). The surface wind speed variograms of land environments (Congo, South_Africa,
Argentinal, and Argentina2) show a relatively sharp transition from the rising portion to the sill, with variogram
ranges between 60 and 300 km (Figure 4j). Such variograms have strong spatial decorrelation at specific scales,
pointing to the increased role of local processes in producing variability. It's likely that the variability in surface
wind speeds in convective environments over land is at least partly dominated by topography and other land
surface characteristics constant in space and time. This is different from oceanic environments, where variability
in surface wind speeds is primarily dictated by large-scale pressure gradients and storm inflow/outflows. The
length scales of variability for surface winds exceed 300 km for oceanic simulations.

At 500 hPa (Figure 4f), the two Argentina simulations exhibit the greatest variability, likely due to strong
synoptic-scale pressure gradients combined with the effects of intense deep convection in the vicinity. There is no
clear distinction between tropical land and ocean environment. The length scales of variability for wind speeds at
500 hPa are much larger (>400 km in most cases) when compared to the surface winds (Figure 4j).

3.2.4. Surface Fluxes

Generally, the variability of surface fluxes in convective environments over land is larger than that over water
(Figures 4h and 4i). Surface fluxes are strongly impacted by land/ocean surface properties (surface temperature,
roughness, etc.) which vary considerably more over land. Moreover, the parameterizations in the RAMS model
do not account for changes in sea roughness with wind speeds. Surface flux variograms for some tropical land
cases have relatively well-defined ranges. This is similar to the surface wind variograms (Figure 4c) and indicates
the role of local processes in producing this variability in surface fluxes. The length scales range from 50 to 90 km
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for most simulations, with secondary scales larger than 500 km also present in some simulations (Figure 4j). The
multiple scales of variability in surface fluxes for certain simulations appear to be due to the presence of both land
and ocean in these simulations.

3.2.5. CAPE

Maximum convective available potential energy (MCAPE, Colman, 1990) variograms show that the Argentina
simulations have the largest variability across most spatial scales; only Brazill and Congo (tropical land envi-
ronments with isolated convection) have larger variability at scales less than ~50 km. The effective length scales
associated with MCAPE range from approximately 60 km in the Congo to around 600 km in Australia (Figure 4;).
These scales may influence the spatial extent and organization of subsequent convective activity.

4. Summary and Conclusions

In this study, we use structure functions, specifically first-order structure function and variograms (which are
proportional to second-order SF), to quantify horizontal spatial variability (both spatial roughness and variability
magnitude) of several convectively important parameters in a wide variety of simulated tropical and subtropical
convective environments. We find that:

¢ For near-surface fields, horizontal wind speed is the roughest (shorter correlation lengths) for length scales
between 10 and 100 km over land.

o Tropical oceanic environments show the lowest magnitudes of variability in surface moisture and temperature,
while subtropical land environments show the greatest variability across scales.

¢ On an average, the magnitude of mid-level moisture (500 hPa) variability over tropical oceanic convective
environments is greater than that over tropical land and subtropical regions, pointing to the importance of
strong large-scale moisture gradients in these environments.

o Certain variograms of near-surface wind speed and surface sensible and latent heat fluxes, show relatively
well-defined ranges, implying sharp decorrelation lengths and a larger role of local processes, such as
topography, in producing spatial variability.

Similar conclusions can be drawn from WRF output (Figures S2-S5 in Supporting Information S1). The above
conclusions point to significant horizontal variability within tropical and subtropical convective environments
with wide-ranging correlation length scales. Model grid spacings and observation densities that may be adequate
for capturing most of the spatial variability for one variable may be inadequate for another variable. The length
scales presented in this study can help guide the resolution requirements for large-domain model simulations and
remotely sensed and in situ observational platforms. Furthermore, the scaling behavior of structure functions can
be used to model sub-grid variability across length scales, conditioned upon the variable, altitude, convective
regime, etc. This information is valuable in developing scale-aware parameterizations and stochastic parame-
terizations for coarse-resolution models. For example, stochastic parameterizations of sub-grid cloud fraction for
global climate models can use the scaling exponents and length scales of water species mixing ratio fields from
higher-resolution simulations, such as the ones used in this study, as constraints to inject more realistic, spatially
coherent perturbations at unresolved scales. Finally, we emphasize that these results are obtained from high-
resolution model output. The next step is to thoroughly verify these results by conducting the same analysis of
observations.
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