

Deforestation Impacts on Clouds and Precipitation Over Borneo Vary Across the Diurnal Cycle

Gabrielle "Bee" Leung¹ and Susan C van den Heever²

¹University of Wisconsin - Madison

²Colorado State University

October 10, 2025

Abstract

The impact of tropical deforestation on clouds and precipitation remains uncertain due to complex interactions between land surface changes and atmospheric processes on convective and mesoscales. Here, we examine the impact of deforestation over Borneo in Southeast Asia using a pair of high-resolution large eddy simulations. Replacing tropical forest with oil palm plantations reduces surface roughness thereby making surface-atmosphere exchanges less efficient, leading to warmer land but a cooler near-surface atmosphere. In this moist environment, evapotranspiration can compensate for the added surface heating, thereby increasing local moisture availability. To examine how this impacts cloud formation, we identify and track tens of thousands of clouds to quantify shifts in the distribution of tropical convection across the diurnal cycle. Overall, deforestation suppresses shallow-to-deep convective development, though the shallow cumuli which do form start raining earlier in the day due to increased low-level moisture. However, this reduction in shallow cloud cover is not spatially uniform: in areas where the deforestation gradient is strong, midday shallow cumuli are enhanced by mesoscale vegetation breezes. Deforestation also weakens sea breeze-driven moisture convergence, leading to the relative enhancement of terminal congestus over deep convection and a shift in the onset of deep convection and precipitation towards later in the evening. Our findings emphasize that deforestation impacts can vary diurnally depending on cloud type and interactions with mesoscale phenomena, as well as spatially depending on the location relative to deforested regions. This variability should be incorporated when considering the overall impact of deforestation on clouds, rainfall, and climate.

1 Deforestation Impacts on Clouds and Precipitation Over Borneo Vary Across the Diurnal Cycle

2 **G. Leung^{1,2}, and S.C. van den Heever¹**

3 ¹Department of Atmospheric Science, Colorado State University

4 ²Department of Atmospheric and Oceanic Sciences, University of Wisconsin – Madison

5

6 Corresponding author: Gabrielle “Bee” Leung (bee.leung@wisc.edu)

7

8 *CRediT author contributions:*

9 G.L. – Conceptualization, Funding acquisition, Formal analysis, Methodology, Software,
10 Visualization, Writing – original draft

11 S.C.v.d.H. – Conceptualization, Funding acquisition, Supervision, Resources, Writing – review
12 & editing

13

14 **Key Points:**

- 15 • Vegetation shifts from forest to oil palms lowers sensible heating and raises latent heating
16 as evapotranspiration offsets surface warming.
- 17 • Deforestation decreases shallow cloud cover but enhances cloudiness along deforestation
18 boundaries via vegetation breezes.
- 19 • Deforestation weakens the moisture convergence driving sea breeze deep convective
20 rainfall but shallow cumuli rain earlier in the day.

21 **Abstract**

22 The impact of tropical deforestation on clouds and precipitation remains uncertain due to
 23 complex interactions between land surface changes and atmospheric processes on convective and
 24 mesoscales. Here, we examine the impact of deforestation over Borneo in Southeast Asia using a
 25 pair of high-resolution large eddy simulations. Replacing tropical forest with oil palm plantations
 26 reduces surface roughness thereby making surface-atmosphere exchanges less efficient, leading
 27 to warmer land but a cooler near-surface atmosphere. In this moist environment,
 28 evapotranspiration can compensate for the added surface heating, thereby increasing local
 29 moisture availability. To examine how this impacts cloud formation, we identify and track tens
 30 of thousands of clouds to quantify shifts in the distribution of tropical convection across the
 31 diurnal cycle. Overall, deforestation suppresses shallow-to-deep convective development, though
 32 the shallow cumuli which do form start raining earlier in the day due to increased low-level
 33 moisture. However, this reduction in shallow cloud cover is not spatially uniform: in areas where
 34 the deforestation gradient is strong, midday shallow cumuli are enhanced by mesoscale
 35 vegetation breezes. Deforestation also weakens sea breeze-driven moisture convergence, leading
 36 to the relative enhancement of terminal congestus over deep convection and a shift in the onset
 37 of deep convection and precipitation towards later in the evening. Our findings emphasize that
 38 deforestation impacts can vary diurnally depending on cloud type and interactions with
 39 mesoscale phenomena, as well as spatially depending on the location relative to deforested
 40 regions. This variability should be incorporated when considering the overall impact of
 41 deforestation on clouds, rainfall, and climate.

42 **Plain Language Summary**

43 Deforestation is widespread in the tropics. Though we know changes to the land surface can
 44 impact the atmosphere above it, we still do not fully understand how these changes affect
 45 different types of clouds throughout the day. Here, we use an atmospheric model to simulate
 46 clouds over Southeast Asia. We explore how deforestation impacts cloud formation by
 47 comparing simulations with the same atmospheric conditions but using pre- and post-
 48 deforestation land cover. Most crucially, we find deforestation can have contrasting impacts on
 49 cloudiness depending on the time of day and spatial scale. Deforestation slows the transition of
 50 shallow clouds into deep convection. However, it locally increases cloudiness close to the
 51 deforestation boundary by driving breezes between the forest and deforested areas. The impacts
 52 of deforestation on rainfall are similarly complex, with increases in area covered by weak rain
 53 but a large decrease in rainfall amounts overall. These findings show that the impact of
 54 deforestation on clouds and rainfall is not simple. The atmospheric response to forest loss
 55 depends on many competing processes that need to be considered if we want to accurately
 56 predict how deforestation impacts freshwater availability, precipitation extremes, and the climate
 57 and hydrology of tropical regions.

58 **1 Introduction**

59 Anthropogenic activities drive widespread deforestation in the tropics (Kim et al., 2015;
 60 Winkler et al., 2021). Southeast Asia—particularly the island of Borneo—is a hotspot of tropical
 61 deforestation, with extensive forest clearing in recent decades driven primarily by oil palm and
 62 rubber plantations (S. Chen et al., 2024; Jamaludin et al., 2022; Parker et al., 2024). It is widely
 63 accepted that these changes to land surface properties impact the atmosphere through their

64 effects on fluxes of heat, moisture, and momentum between the surface and atmosphere
 65 (Mahmood et al., 2014; Santanello et al., 2018). However, how this translates to impacts on
 66 convective clouds and rainfall remains uncertain (Gentine et al., 2019).

67 The coupling between land surface properties and clouds involves simultaneous changes
 68 to the surface energy budget, and boundary layer moisture and temperature responses. At times,
 69 thermodynamic changes act in opposition: switching from a vegetated surface to bare ground
 70 leads to low-level warming and drying, which have opposite impacts on convection (C.-C. Chen
 71 et al., 2019). The net impact of these contrasting feedbacks appears to depend on the background
 72 meteorology (Findell & Eltahir, 2003) and cloud type (Baidya Roy & Avissar, 2002; Cioni &
 73 Hohenegger, 2017), both of which vary across the course of the day. Changes in clouds caused
 74 by land cover changes in turn drive shifts in the energy budget. Moreover, the surface energy
 75 budget itself changes over the day as the balance between radiation, turbulent fluxes, and surface
 76 heating is repartitioned in response to diurnal changes in insolation. These interactions between
 77 the surface and convection further complicate the cloud response to deforestation, particularly
 78 since this land-atmosphere coupling evolves on diurnal timescales.

79 Recent satellite-based estimates suggest deforestation in Southeast Asia locally enhances
 80 cloud cover (Xu et al., 2022; Leung et al., 2024), though the magnitude of the cloud response
 81 appears to depend on background meteorology and time of day. Although such observational
 82 quantifications are essential, it is challenging to extract information about the mechanisms
 83 driving cloud responses from these long-term estimates. This observational work must thus be
 84 complemented with process-oriented modeling studies.

85 Most modeling-based investigations of deforestation impacts over Southeast Asia have
 86 used global or regional climate models, which allow for long integration times to assess the
 87 climatic implications of these widespread changes in land cover (Werth & Avissar, 2005;
 88 Schneck & Mosbrugger, 2011; Takahashi et al., 2017; Tölle et al., 2017; C.-C. Chen et al., 2019;
 89 H.-C. Chen & Lo, 2023). However, disagreements remain about the sign of deforestation impacts
 90 on cloud cover. This is perhaps to be expected, given that processes driving convection
 91 (especially shallow clouds) are not explicitly resolved in large-scale models and are thus
 92 sensitive to how models parameterize convective responses to these compensating deforestation
 93 impacts on moisture and temperature (C.-C. Chen et al., 2019). This uncertainty highlights the
 94 need to improve our understanding of land surface-convection interactions at scales where
 95 convective processes can be more accurately resolved, especially in regions like Southeast Asia
 96 where most convection is driven by diurnally reversing mesoscale flows (e.g., sea breezes,
 97 terrain flows) that are sensitive to surface properties (Qian, 2008; Yang & Slingo, 2001).

98 Despite these challenges in quantifying cloud responses to forest loss, doing so is
 99 essential to fully characterizing deforestation impacts on weather, hydrology, and the Earth's
 100 energy balance (Pielke Sr., 2001; Boysen et al., 2020; Laguë et al., 2021). Such impacts may also
 101 vary between different types of convection (Gentine et al., 2019). Thus, we must understand how
 102 different cloud types and associated precipitation rates respond to changes in the land surface.

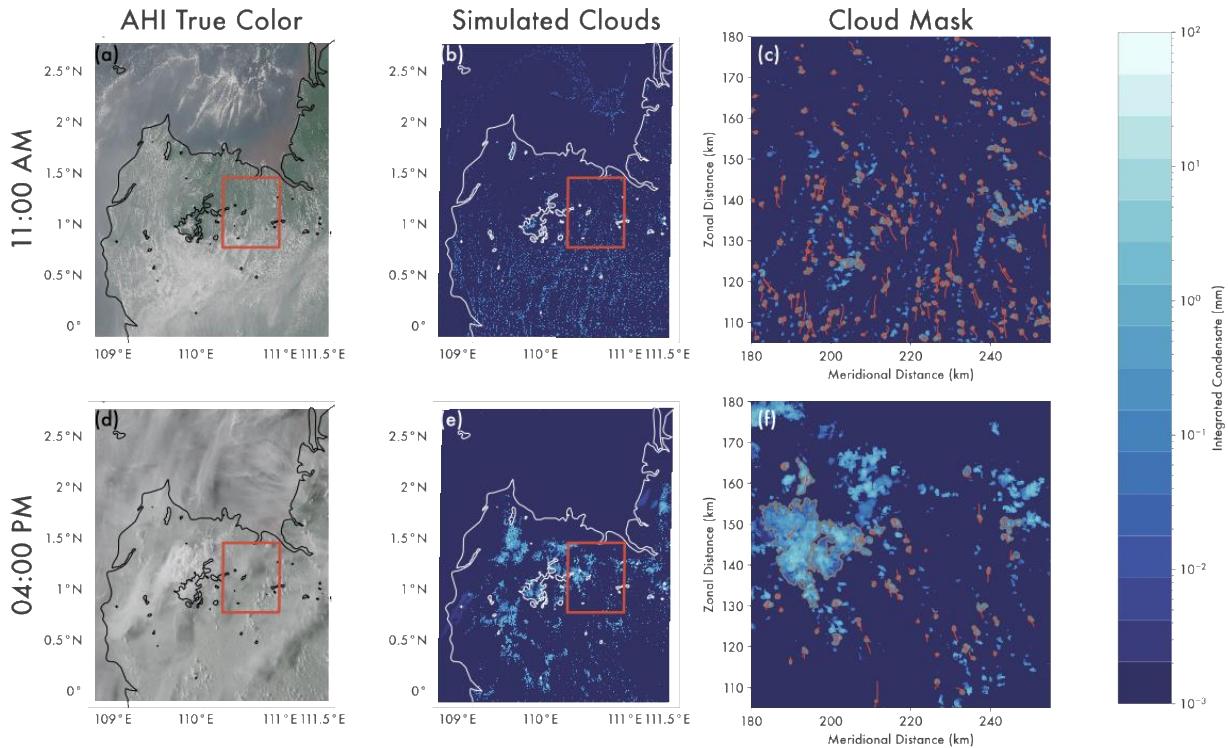
103 This research aims to quantify the impacts of deforestation on a range of tropical
 104 convection morphologies, as well as elucidate the physical mechanisms driving these impacts.
 105 Specifically, we address the following two science questions: (1) how does deforestation impact
 106 different cloud types across the diurnal cycle? and (2) what is the impact of those cloud
 107 responses on surface precipitation? We address these questions using cloud object-tracking

108 techniques applied to a pair of high-resolution simulations with forested and deforested land
 109 cover, described in **Section 2**. We quantify how these land surface changes impact the surface
 110 energy budget and near-surface atmosphere in **Section 3**. In **Section 4**, we quantify impacts of
 111 the initiation of tracked cloud objects across the diurnal cycle. We discuss how these
 112 deforestation-driven shifts in the cloud distribution impact precipitation in **Section 5**. Finally, we
 113 summarize our findings and discuss broader implications of this work in **Section 6**.

114 **2 Methods**

115 **2.1 Model description and configuration**

116 We conducted large eddy simulations (LES) using the Regional Atmospheric Modeling
 117 System (RAMS version 6.3.04) (Pielke Sr. et al., 1992; Cotton et al., 2003; Saleeby & van den
 118 Heever, 2013). Full information about the model settings is provided in **Table 1**, but we describe
 119 key aspects of the simulation design and model set-up below.


120 **Table 1. RAMS model parameters**

Model aspect	Description
Grid	Arakawa-C grid
	2150 x 2230 points, $\Delta x = \Delta y = 150\text{m}$
	106 vertical levels, $\Delta z = 50\text{-}300\text{m}$ with a stretch ratio of 1.04
Timestep	$\Delta t = 1.5\text{s}$
	Output every 5 minutes
Integration time	6 hours spin-up time (excluded from analysis) + 72 hours (3 diurnal cycles)
Initialization	Initialized from ERA-5 (Hersbach et al., 2020)
Boundary conditions	Nudged with hourly ERA-5 data at lateral (25 grid points from side) and top (above 22km) boundaries with nudging timescale = 900s (15 mins)
Surface scheme	Land Ecosystem-Atmosphere Feedback (LEAF-3) (Walko et al., 2000)
	Land cover taken from HILDA+ (Winkler et al., 2021) matched to LEAF-3 land cover classes
	Soil classes taken from UN FAO dataset (FAO United Nations, 1974)
	11 soil layers extending to 0.5m below the surface, with soil moisture and temperature initialized from ERA-5
Turbulence scheme	Smagorinsky (1963) with modifications from Lilly (1962) and Hill (1974)
Microphysics scheme	RAMS two-moment bin-emulating microphysics (Meyers et al., 1997; Saleeby & Cotton, 2008)
Radiation scheme	RTE-RRTMGP (Pincus et al., 2019)
	Radiation tendencies updated every 5 minutes
Aerosol treatment	Aerosol number concentration = 600 cm^{-3} at surface, exponentially decreasing with height with scale height of 7km
	Fixed aerosol concentrations (no sources, sinks, or advection)
	Aerosol-radiation interactions are represented

121

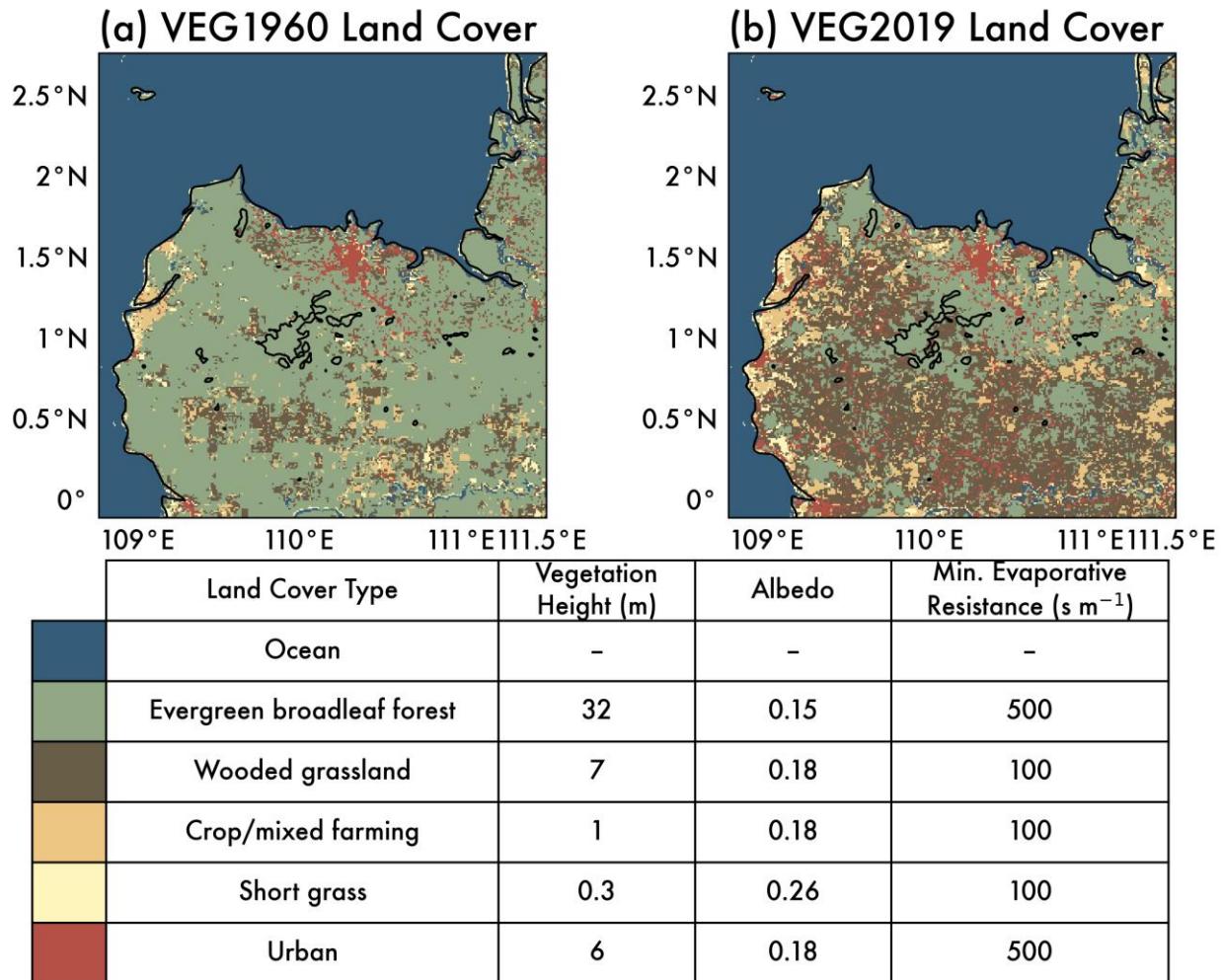
122 Our simulations are designed to reproduce the diurnal cycle of convection (**Figure 1**),

123 including the daytime transition from shallow to deep convection during synoptically benign
 124 conditions, when convection is primarily driven by local thermodynamics rather than large-scale
 125 forcing. The simulation domain (**Figure 2**) encompasses a large area (~322x334km) in
 126 northwestern Borneo, around Kuching, Malaysia. This region experienced extensive land cover
 127 changes over the past few decades (**Section 2.2**). The morphology, timing, and distribution of
 128 clouds in our simulations are similar to observed cloud patterns (**Figure 1**). We note, however,
 129 that we analyze these simulations in a statistical manner to examine land-convection interactions
 130 in the region, rather than as a case study recreating specific meteorology from a specific day.

Figure 1. Simulations reproduce the observed diurnal cycle and distribution of convection, shown for 11:00a.m. (a-c) and 4:00p.m. (d-f) on 17 September 2019. Advanced Himawari Imager (AHI) true color imagery (left) compared to integrated condensate from the VEG2019 simulation (center). Black (a,d) and white (b,c,e,f) contours show coastline and 500m a.s.l. Red boxes (a,b,d,e) indicate the region in (c,f) used to demonstrate the *tobac* cloud identification approach, including cloud object centers (red circles), trajectories (red lines), and outlines of the cloud masks (gray contours).

131 To adequately resolve fine-scale atmospheric features driving the initiation and
 132 development of shallow cumuli, we used a fine spatiotemporal resolution ($\Delta x = \Delta y = 150$ m,
 133 $\Delta z = 50$ -300m, $\Delta t = 1.5$ s). This, in combination with our large model domain integrated over three
 134 diurnal cycles (72 hours, 17-20 September 2019) allowed us to extensively sample the trimodal
 135 distribution of tropical convection (Johnson et al., 1999). Our simulation period was directly
 136 before the transition from southwest to northeast monsoon (Reid et al., 2023). We initialized and
 137 nudged the lateral boundary conditions using ERA-5 reanalysis (Hersbach et al., 2020), which

138 constrained the synoptic scale environment while ensuring that convective and mesoscale
139 features evolve freely in the domain.


140 Two-way land-atmosphere exchanges were parameterized using the Land Ecosystem
141 Atmosphere Feedback (LEAF-3) (Walko et al., 2000) surface model. LEAF-3 represents
142 turbulent and radiative exchange between the soil/ground, vegetation, and a canopy layer, which
143 then exchanges energy, water, and momentum with the lowest atmospheric layer.

144 2.2 Experiment set-up

145 We conducted two simulations constrained with the same atmospheric initial boundary
146 conditions but different land cover. Using identical large-scale atmospheric forcing allowed us to
147 compare how land-atmosphere interactions impact local convective development.

148 Land cover was taken from the Historic Land Dynamics Assessment+ (HILDA+) dataset
149 (Winkler et al., 2021), which combines remote sensing and long-term statistical datasets to
150 estimate land cover ($\Delta x, y = 1\text{ km}$) from 1960-2019. HILDA+ land cover classes do not directly
151 correspond to those in LEAF-3. Thus, we adapted HILDA+ land cover for use in our simulations
152 by identifying which HILDA+ categories most closely matched the observed spatial patterns in

153 2019 land cover from MODIS (Friedl et al., 2002) and the default RAMS land cover. Land
 154 surface properties key to this study used in the numerical experiments are shown in **Figure 2**.

Figure 2. Model land cover set-up for (a) VEG1960 and (b) VEG2019. Black contours show coastline and 500m a.s.l. topography. Legend shows land surface properties in LEAF-3 relevant to this study.

155 We ran one simulation with land cover from 1960 (VEG1960) and one with land cover
 156 from 2019 (VEG2019) (**Figure 2**). By using a realistic distribution of land cover rather than total
 157 deforestation (Werth & Avissar, 2005; Takahashi et al., 2017) or an idealized checkerboard-type
 158 pattern (Rieck et al., 2014), we can examine the effects of realistic scales of deforestation and
 159 patterns of landscape heterogeneity.

160 The primary land cover change between 1960 and 2019 is a widespread shift from
 161 “evergreen broadleaf forest” representing intact tropical rainforests to “wooded grassland” and
 162 “cropland” representing plantations of oil palm, rubber, and other agricultural uses. Increases in
 163 “urban surface” are also evident. We refer to these three predominant non-forest land cover types
 164 as “deforested”. Compared to intact rainforests, deforested land has a lower surface roughness /

165 shorter canopy height and larger albedos (**Figure 2**). Deforested areas also have lower
 166 evaporative resistance, since forest vegetation retains more water for a given temperature
 167 increase.

168 It is important to note that unlike other modeling studies examining deforestation in
 169 Southeast Asia that replace forest with C4-type grass (Tölle et al., 2017; C.-C. Chen et al., 2019),
 170 forest is primarily replaced by “wooded grassland” in our simulations. This surface type best
 171 matches observations of oil palm and rubber plantations in terms of land surface properties
 172 including vegetation height (June et al., 2018) and evaporative resistance (Giambelluca et al.,
 173 2016). In contrast to regions like the Amazon where deforestation is primarily driven by
 174 conversion to cropland or pastureland, transitions from tropical forest to palm oil and rubber
 175 plantations in Southeast Asia are unique in that they do not necessarily reduce
 176 evapotranspiration (Spracklen et al., 2018).

177 2.3 Cloud object identification and tracking

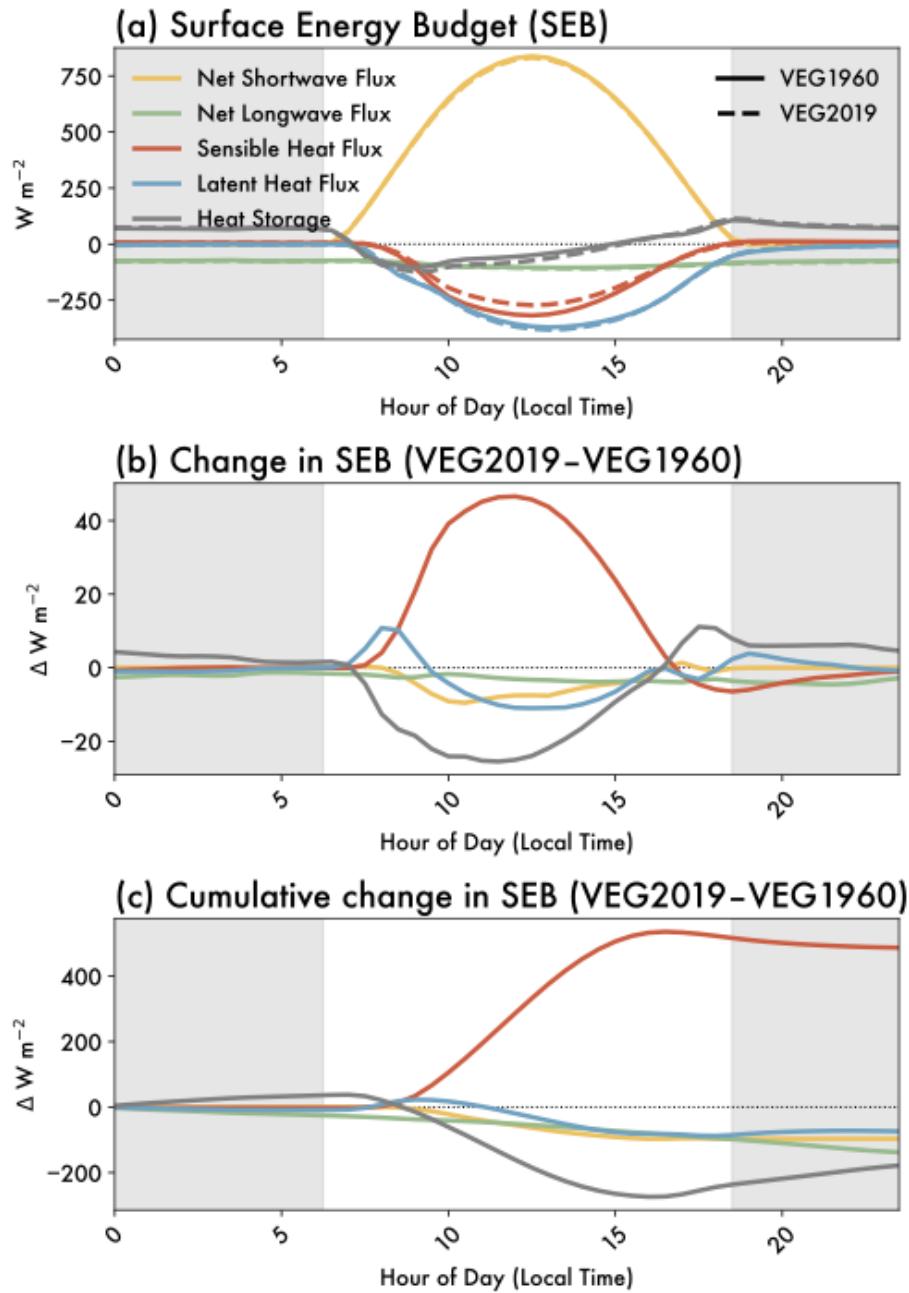
178 We tracked convective clouds across their lifecycles using the Tracking and Object Based
 179 Analysis of Clouds (*tobac* version 1.5) algorithm (Heikenfeld et al., 2019; Sokolowsky and
 180 Freeman et al., 2024). Below is a brief description of how we used *tobac*. We direct readers to
 181 the cited papers for details of the *tobac* algorithm.

182 First, we identified updrafts as contiguous three-dimensional regions with local vertical
 183 velocity maxima $>1 \text{ m s}^{-1}$ (with additional thresholds every 2 m s^{-1} between 2 and 50 m s^{-1} to
 184 separate updrafts of varying intensities) and volume >64 grid points ($0.072\text{--}0.432 \text{ km}^3$,
 185 depending on vertical location) depending on vertical location). Second, we connected updrafts
 186 temporally by linking their projected trajectories in time. Any updrafts with lifetimes <15
 187 minutes were excluded from our analysis to ensure we only analyze clouds that are well-captured
 188 across their life cycle. Third, we used watershedding to identify contiguous regions around each
 189 updraft that have vertical velocities $>1 \text{ m s}^{-1}$ and cloud condensate mixing ratios $>0.01 \text{ g kg}^{-1}$.
 190 Regions with collocated updraft and condensate are considered “clouds”. Thus, we separate
 191 cloudy updrafts from dry boundary layer thermals. Finally, we calculated key properties for each
 192 cloud object, including cloud lifetime, cloud base height (CBH), cloud top height (CTH), CTH
 193 growth rate, and mean precipitation rates.

194 The large dataset of identified clouds ($>75,000$ per simulation) allows for robust
 195 statistical assessment of a range of cloud modes, each of which may be coupled to the land
 196 surface via different processes. We required that all clouds initiate from within the boundary
 197 layer (with their updraft centroid at the time of first detection $<2.5\text{km}$). We excluded high clouds
 198 originating offshore or outside our domain from our analysis. While high cirrus is ubiquitous in
 199 the region, the origin of such clouds offshore or outside our domain are not directly impacted by
 200 the surface perturbations we test here. The specific thresholds utilized here are ultimately
 201 subjective, but testing of these parameters showed qualitatively similar results. *tobac*-tracked
 202 cells account for $>80\%$ of the total surface precipitation in the domain, adding confidence that

203 our methods capture most of the convective clouds of interest to our science questions. Examples
 204 of cloud masks and tracks generated using *tobac* are shown in **Figure 1c,f**.

205 **3 Deforestation impacts on the surface energy budget**


206 We begin by examining the surface energy budget, diurnally averaged over land (**Figure**
 207 **3**). It is important to note that we use a sign convention of negative values indicating terms which
 208 cool the surface (energy transferred from surface to atmosphere or ground). The magnitude of
 209 radiative and turbulent heat fluxes in our simulations compare favorably with flux measurements
 210 over rainforests and oil palm plantations in Borneo (Fowler et al., 2011; Takanashi et al., 2010;
 211 Tang et al., 2019). The magnitude of latent heat fluxes (LHF) is larger than that of sensible heat
 212 fluxes (SHF), due to the abundant moisture in the soil and vegetation canopy. Prior to the onset
 213 of clouds, the mean Bowen ratio (B=SHF/LHF) ranges from 0.3-0.5 between 7-9a.m. (here and
 214 throughout the text, times are local time, i.e., UTC+8).

215 Deforestation from VEG1960 to VEG2019 (solid versus dashed lines; **Figure 3a**) drives
 216 robust shifts in the surface energy budget (**Figure 3b**). Positive changes in **Figure 3b** indicate
 217 deforestation leads to more energy transfer *into* the surface (or less transfer *out* of the surface).
 218 Similar trends are evident across all simulation days.

219 Changes to the surface energy budget between the two simulations are dominated by SHF
 220 impacts (red lines; **Figure 3**). Deforestation reduces energy transfer from the surface to the
 221 atmosphere via SHF (a decrease in SHF magnitude). This is driven by the reduced surface
 222 roughness associated with changes from tall rainforest to shorter palm oil plantations. The
 223 smoother deforested surface in the latter is less efficient at transmitting energy into the
 224 atmosphere through turbulent fluxes.

225 As a result of the less efficient turbulent exchange in the deforested regions, more energy
 226 accumulates at the surface and is used in heating the vegetation canopy and the ground (gray
 227 lines; **Figure 3**). We confirm this by examining vegetation canopy and near-surface (~25m a.g.l.)
 228 air in **Figure 4**. Indeed, the increased energy storage results in warmer land surface temperatures
 229 and warmer air at canopy level throughout the day (**Figure 4c**), consistent with satellite-based
 230 observations (Sabajo et al., 2017; Crompton et al., 2021) and field measurements (Hardwick et
 231 al., 2015). However, this energy is not efficiently transmitted from the smooth surface into the
 232 atmosphere, resulting in a more modulated near-surface temperature diurnal cycle in VEG2019
 233 compared VEG1960 (**Figure 3b**). Rather than transferring energy through turbulent fluxes, the

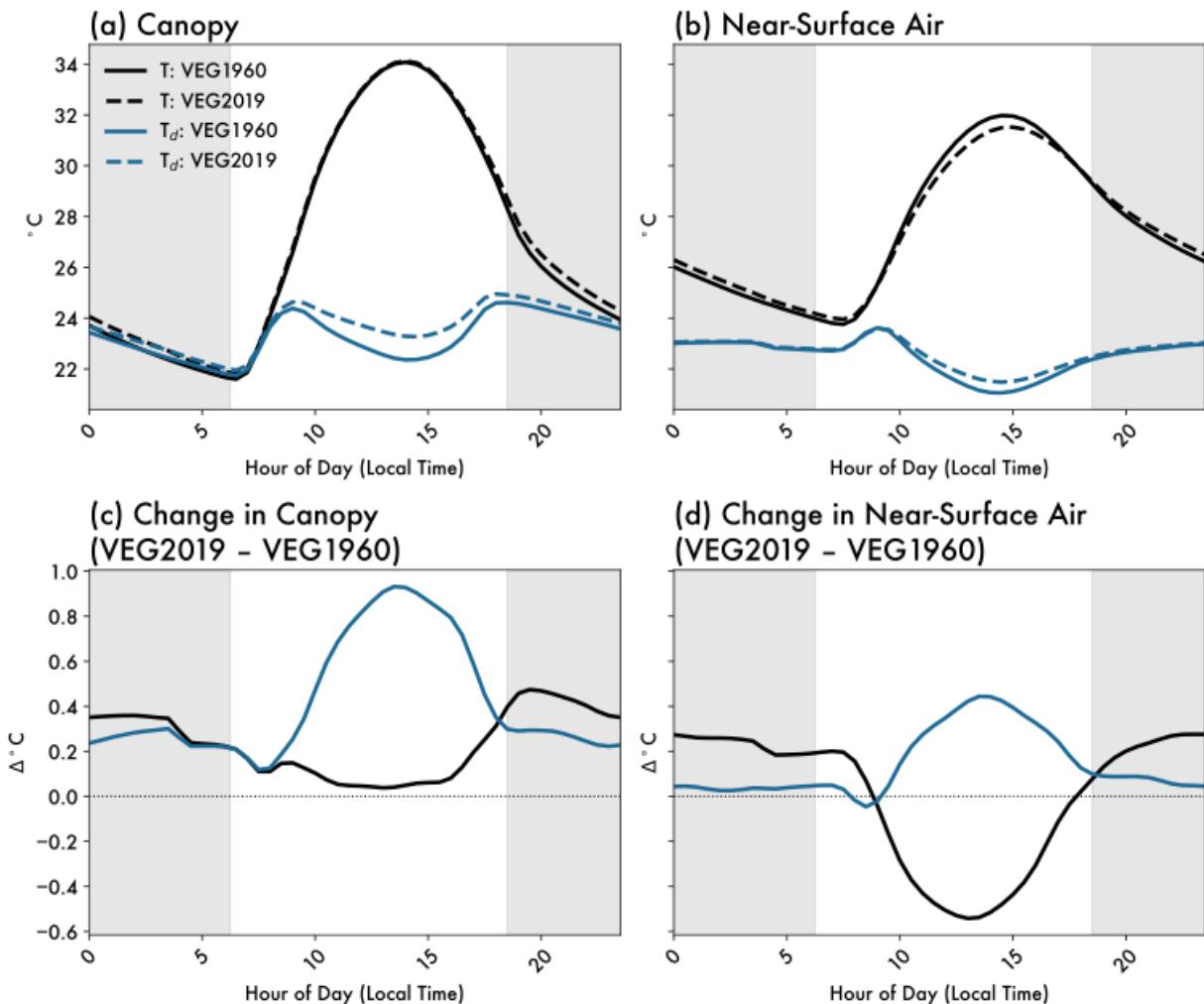

234 smooth deforested surface radiates more energy as outgoing longwave radiation (OLR) (green
 235 lines; **Figure 3c**).

Figure 3. Diurnal evolution of the surface energy budget. (a) Mean surface energy budget, where positive terms heat the surface and negative terms cool the surface. Solid lines are VEG1960, and dashed lines are VEG2019. Differences between VEG2019 and VEG1960 are shown as (b) instantaneous and (c) cumulative changes. Gray shading shows nighttime hours.

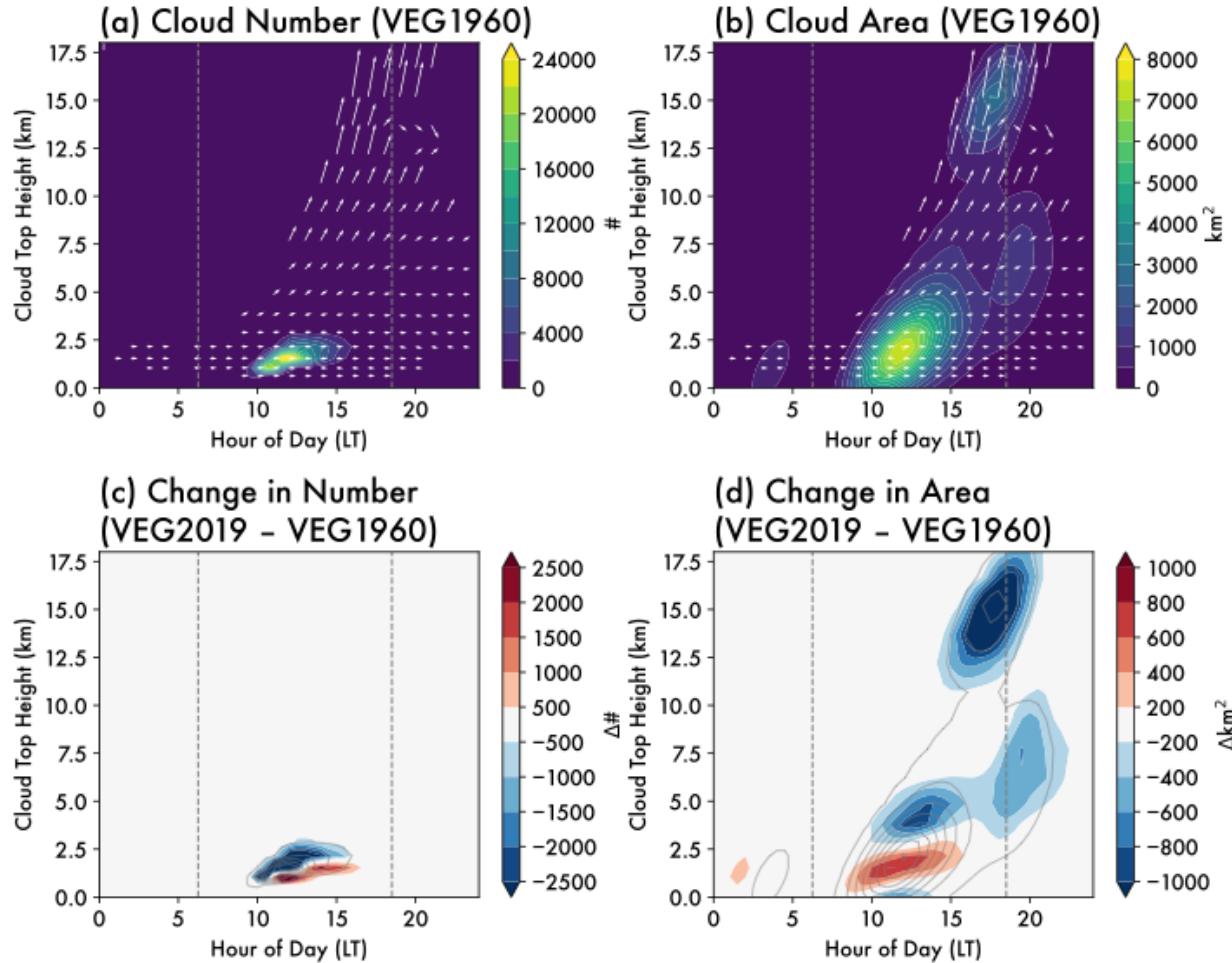
236 The warmer canopy air in VEG2019 enhances evapotranspiration (ET), with most of the
 237 energy stored in the canopy going into latent heating. The deforested areas have lower

238 evaporative resistance, meaning for a given temperature, they release more moisture into the
 239 atmosphere than forested regions. Deforestation thus moistens canopy air (**Figure 4c**). LHF, like
 240 SHF, depends on the efficiency of turbulent surface-atmosphere exchange and is hampered by
 241 the smoother deforested surface. However, since there is a larger moisture source due to
 242 enhanced ET, LHF is enhanced in the deforested scenario after 9a.m. (blue lines; **Figure 3**) once
 243 the canopy heats up sufficiently for ET to counteract reduced turbulence. This response reflects
 244 deforestation in moist, tropical environments where forests are primarily converted to oil palms
 245 or other agricultural lands that retain high soil moisture (van der Molen et al., 2006)—if
 246 deforestation instead converted the forested area to bare soil (or moisture-limited vegetation)
 247 LHF would likely differ (C.-C. Chen et al., 2019; Drager et al., 2020; H.-C. Chen & Lo, 2023).

Figure 4. Diurnal evolution of air in (a) the vegetation canopy and (b) at the lowest near-surface atmospheric level for temperature (black) and dewpoint (blue). Solid lines are VEG1960, and dashed lines are VEG2019. Differences between VEG2019 and VEG1960 are shown for (c) canopy and (d) near-surface air. Gray shading shows nighttime hours.

248 Changes in the surface energy budget following deforestation are dominated by non-
 249 radiative properties (surface roughness and evaporative resistance) rather than radiative

250 properties (albedo) (**Figure 3**), which is consistent with past research for the tropics (Davin & de
251 Noblet-Ducoudré, 2010; Duveiller et al., 2021). We observe <1% decrease in the magnitude of
252 early morning (7-9a.m.) net shortwave (SW) flux following deforestation due to the more
253 reflective surface. Once clouds develop after 9a.m., there is a bigger deforestation impact on SW
254 (yellow line; **Figure 3**). However, changes due to reduced cloud cover (more downwelling SW)
255 and increased albedo (more upwelling SW) act in opposite directions, such that the SW
256 contribution to surface energy budget changes is secondary compared to changes in SHF.


257 **4 Cloud responses to deforestation**

258 4.1 Overview of cloud evolution

259 Our simulations capture the trimodal convection distribution (Johnson et al., 1999) and
260 shallow to deep convection transition in the Maritime Continent (Renggono et al., 2001; Argüeso
261 et al., 2020; Marzuki et al., 2022). **Figure 5** demonstrates the mean distribution of cloud number
262 and area binned by CTH across the diurnal cycle. We show mean cloud development (white
263 arrows; **Figure 5a,b**), calculated as the mean change in CTH over five-minute intervals for all
264 cells within a given bin.

265 The surface heats up after sunrise (6:15a.m.) until shallow cumulus develop around 9a.m.
266 These shallow cumuli ($1\text{km} < \text{CTH} < 3\text{km}$) are mostly non-precipitating and organize in cloud
267 streets. By 12p.m., the sea breeze has propagated onshore, and congestus ($4\text{km} < \text{CTH} < 10\text{km}$)
268 have formed along the convergence zone ahead of the sea breeze. These convective cells
269 precipitate more strongly than cells that develop earlier in the day, and produce cold pools that
270 collide, creating areas of low-level convergence. Some collisions result in deeper cumulonimbus
271 ($\text{CTH} > 10\text{km}$) from 4–6:30p.m., while other less favorably located congestus only reach
272 maximum CTHs of $\sim 8\text{km}$ before dissipating. This division between congestus which eventually
273 become deep convection (transient congestus) and those which do not (terminal congestus) (Luo

274 et al., 2009; Leung & van den Heever, 2022) is evident as the bifurcation in the mean cloud
 275 development (white arrows; **Figure 5a,b**).

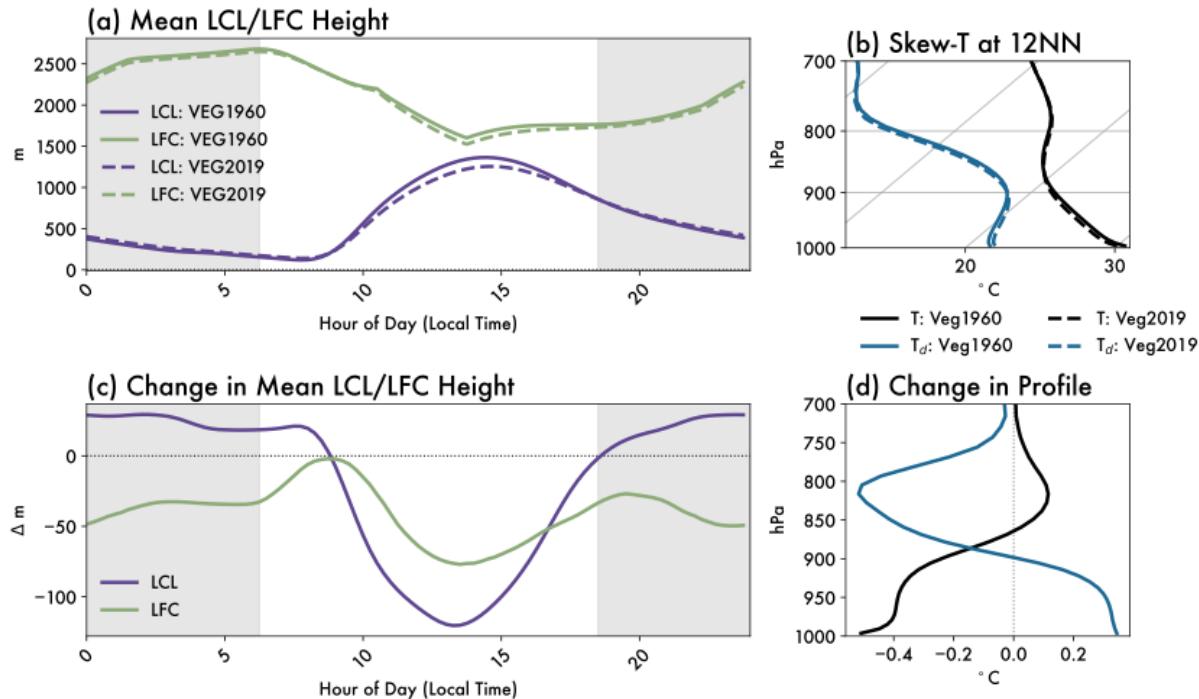
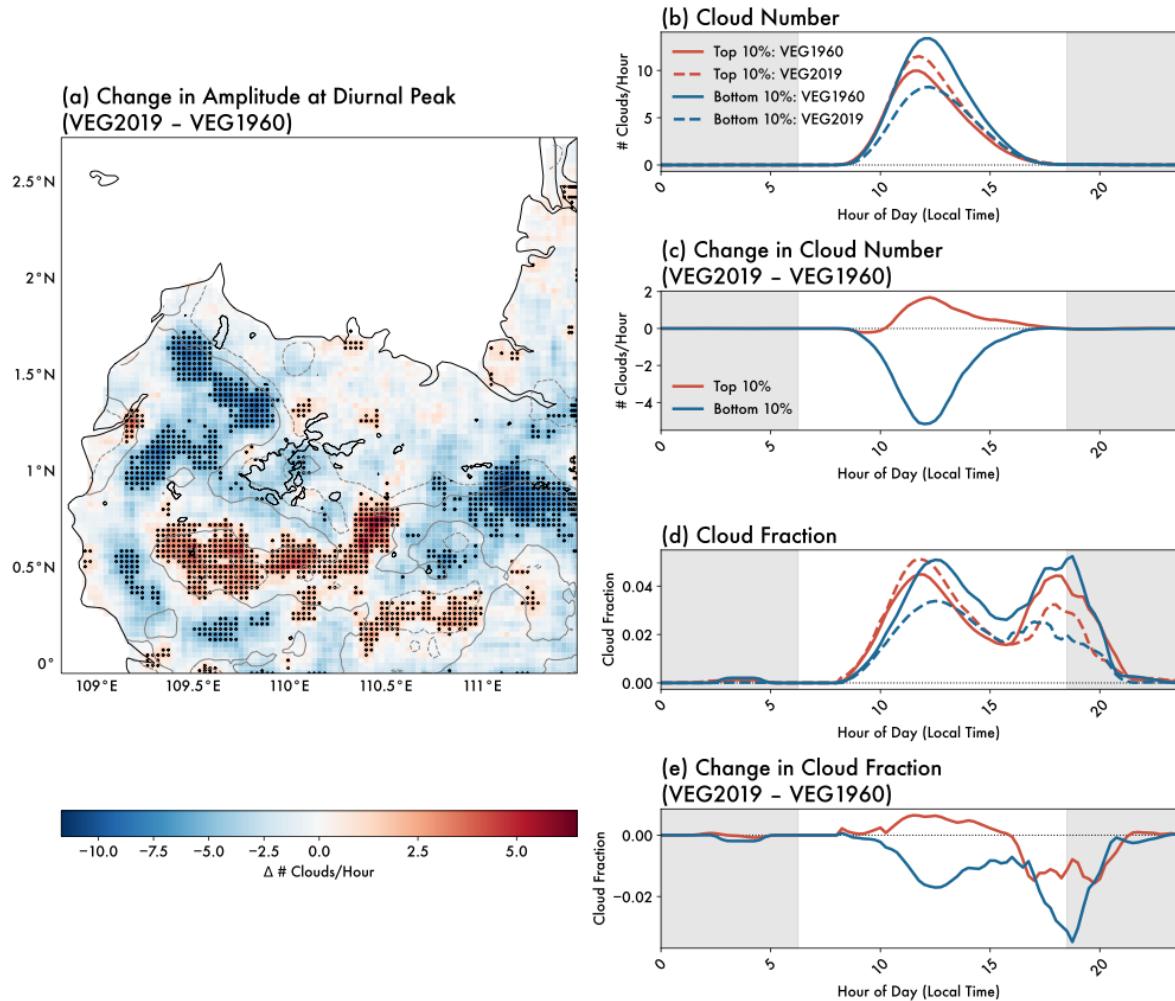


Figure 5. Diurnal cycle of total cloud number and area. Color contours show total (a) number and (b) area of *tobac*-tracked clouds for each joint hour of day and cloud top height (CTH) bin in VEG1960. Height of arrows indicate the mean change in CTH for a given (hour of day, CTH) bin, while the length of arrows is uniform and arbitrary. Difference between VEG2019 and VEG1960 is shown for cloud (c) number and (d) area, with gray contours from (a,b) for comparison. Gray vertical lines indicate sunrise and sunset.

276 4.2 Mean shallow cloud response

277 Deforestation-driven changes in surface-atmosphere interactions manifest as shifts in the
 278 cloud distribution (**Figure 5c,d**). Due to weaker SHFs (**Figure 3**), there are fewer dry boundary
 279 layer thermals, and the planetary boundary layer (PBL) deepens more slowly in VEG2019 than
 280 in VEG1960. The lifted condensation level (LCL) is lower following deforestation (**Figure**
 281 **6a,c**), meaning parcels lifted from the surface should form clouds at lower altitudes. However,
 282 the weakened SHFs limit the ability of thermals to penetrate the LCL and form clouds.

283 Deforestation thus shifts the peak in the cloud diurnal cycle to later in the day, once the PBL is
 284 sufficiently developed.


Figure 6. Diurnal evolution of lifted condensation level (LCL) and level of free convection (LFC). (a) LCL height in purple and LFC height in green. (b) mean skew-T profile at 12p.m., with temperature (black) and dewpoint (blue). Solid lines are VEG1960, and dashed lines are VEG2019. Differences between VEG2019 and VEG1960 are shown for (c) LCL/LFC evolution and (d) atmospheric profile. Gray shading (a,c) shows nighttime hours.

285 The cloud response to lower SHFs following deforestation is counteracted by increased
 286 LHF and evapotranspiration (Figure 3). Although the near-surface atmosphere is moister in the
 287 deforested scenario (Figure 6b,d), this moisture is not transported vertically given the limited
 288 turbulent mixing over smoother deforested surfaces. The lower LCL in VEG2019 coincides with
 289 an increased distance between the LCL and the level of free convection (LFC) around midday,
 290 meaning enhanced convective inhibition (Figure 6a,c). Even if parcels reach the LCL more
 291 easily in VEG2019, they are not positively buoyant and less likely to become active shallow
 292 cumuli (Stull, 1988; Gentile et al., 2013).

293 4.3 The role of mesoscale circulations

294 Mesoscale circulations locally impact cloud frequency in Figure 7, which shows the
 295 deforestation-driven change in amplitude of the diurnal cycle of cloud initiation. We calculate
 296 the mean cloud diurnal cycle based on the number of clouds occurring in each 6x6km box at
 297 each time of day (15-minute increments). We tested other averaging windows in space (1.5–
 298 15km) and time (5–60 minutes), and found the results were qualitatively similar; we select these
 299 parameters for clarity of visualization. For each location, we find the diurnal peak in the number
 300 of clouds and compare this peak for VEG2019 and VEG1960. Figure 7 thus accounts for

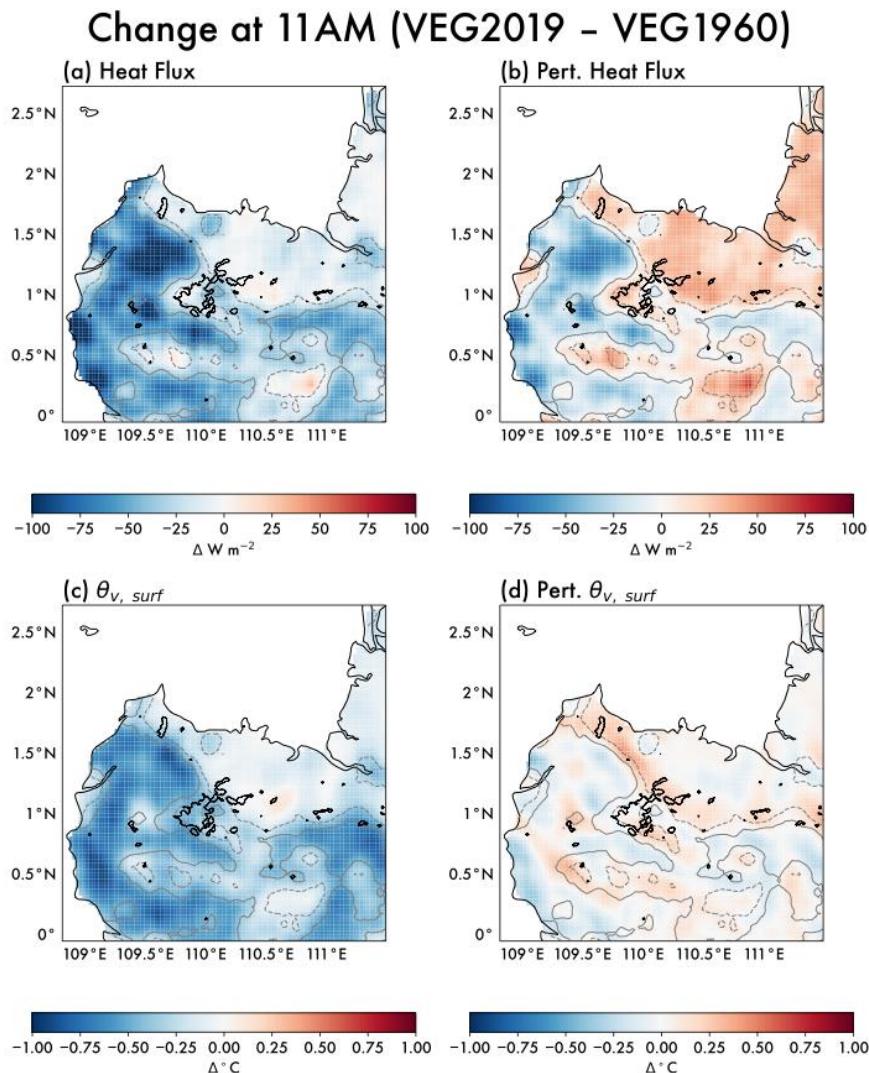
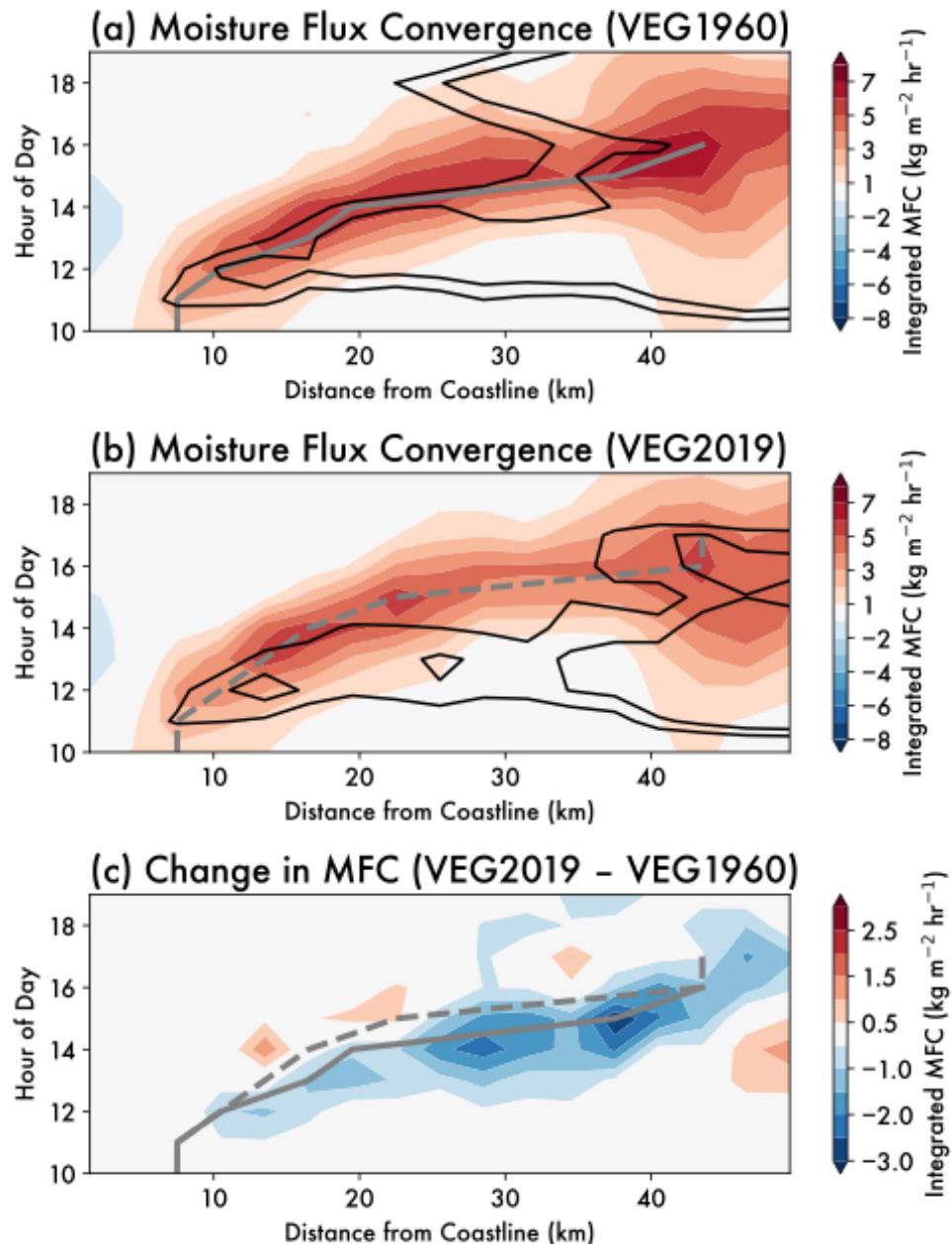

301 temporal offsets in the diurnal cycle (e.g., if cloud development peaks later / earlier in the day).
 302 For most regions, there is a decrease in peak cloud number, consistent with our earlier findings
 303 that deforestation suppresses shallow cumuli (**Figure 5c**). However, there are some areas where
 304 cloudiness is enhanced following deforestation (red points; **Figure 7a**). In these regions, cloud
 305 number and cloud fraction are greater at midday following deforestation (**Figure 7c,e**).

Figure 7. Spatial heterogeneity in cloud response to deforestation. (a) Difference in the amplitude of the diurnal peak in cloud formation between VEG2019 and VEG1960, as described in text. Gray contours show 25% (dashed) and 50% (solid) forest loss between VEG1960 and VEG2019. Black contours show coastline and 500m a.s.l. Circles represent top (red) and bottom (blue) decile of points in terms of the change in the cloud diurnal peak, used for averaging in (b-e). Mean diurnal cycle of cloud (b) number and (d) fraction are shown for the top / bottom decile of points, with the VEG1960 simulation in solid lines and VEG2019 simulation in dashed lines. Changes are shown as the difference between VEG2019 and VEG1960 for cloud (c) number and (d) fraction. Gray shading (b-e) shows nighttime hours.

306 The spatial pattern of deforestation-induced cloud changes comprises dipole structures of
 307 cloudiness aligned along regions of forest loss from VEG1960 to VEG2019. Regions where
 308 cloudiness is enhanced tend to be located on the side of the deforestation boundary with less

309 forest loss, suggesting the influence of mesoscale solenoidal circulations. **Figure 8** shows that
 310 regions of enhanced cloudiness coincide with areas where turbulent heat fluxes and near-surface
 311 virtual potential temperature are enhanced relative to area means. Local enhancements in
 312 cloudiness along the interface between pristine and perturbed land cover regions are driven by
 313 the ascending branch of these circulations on the warmer, drier side of the gradient. These
 314 mesoscale circulations—referred to as vegetation breezes (Saad et al., 2010; Khanna et al., 2017;
 315 J. Chen et al., 2023)—transport low-level moist air from more deforested regions (where LHF
 316 are higher) to less deforested regions where air is positively buoyant and the circulations provide
 317 the lift for cloud formation. This results in local increases in forced cumuli around the
 318 deforestation boundary (Ascher et al., 2025; Falk et al., 2025).

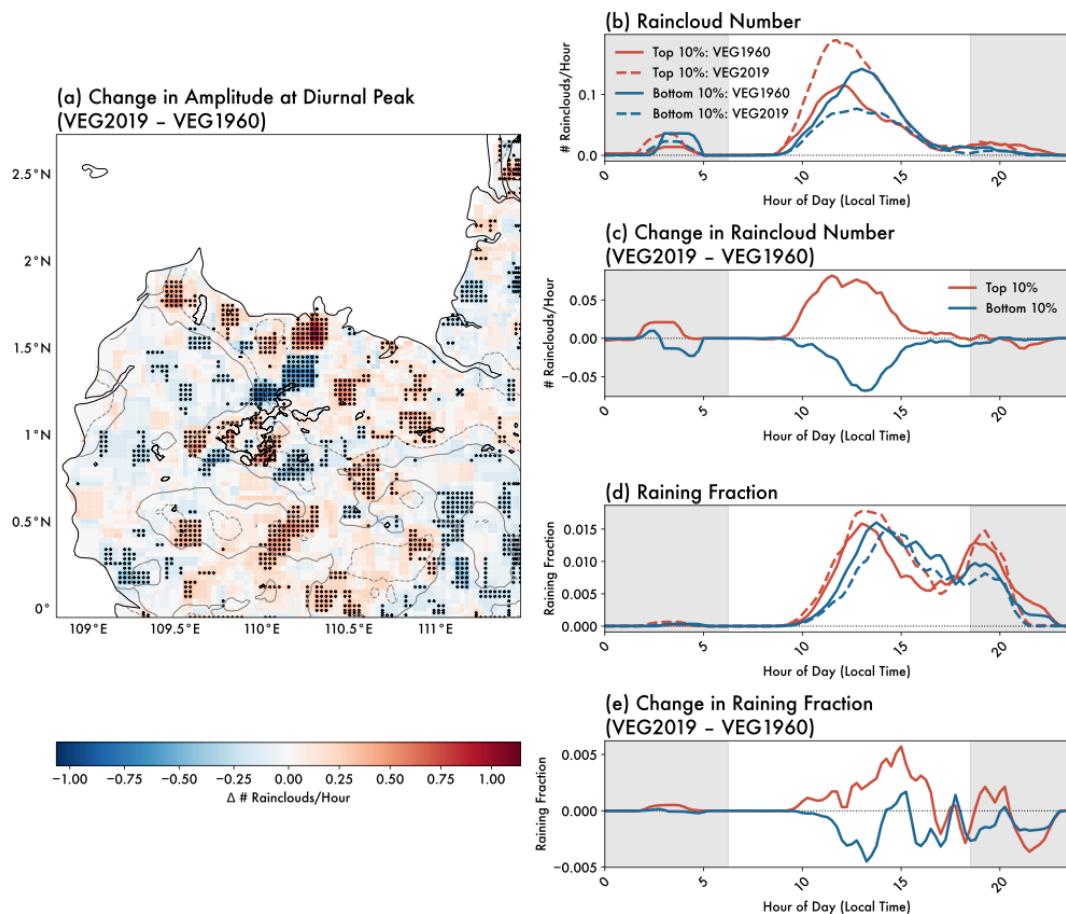
Figure 8. Mesoscale solenoidal circulations are driven by gradients in surface heat flux and buoyancy. Maps of (a) mean turbulent heat flux (sensible + latent) and (b) perturbation heat flux (perturbation from spatiotemporal mean for given hour) from 10:30-11:30a.m., prior to the peak in daytime convection. (c) and (d) show the same for the near surface virtual potential temperature. Gray contours show 25% (dashed) and 50% (solid) forest loss between VEG1960


and VEG2019. Black contours show coastline and 500m a.s.l. Data are aggregated to 3x3km, then smoothed with a 21x21km rolling window.

319 4.3 Impacts on sea breeze and deep convection

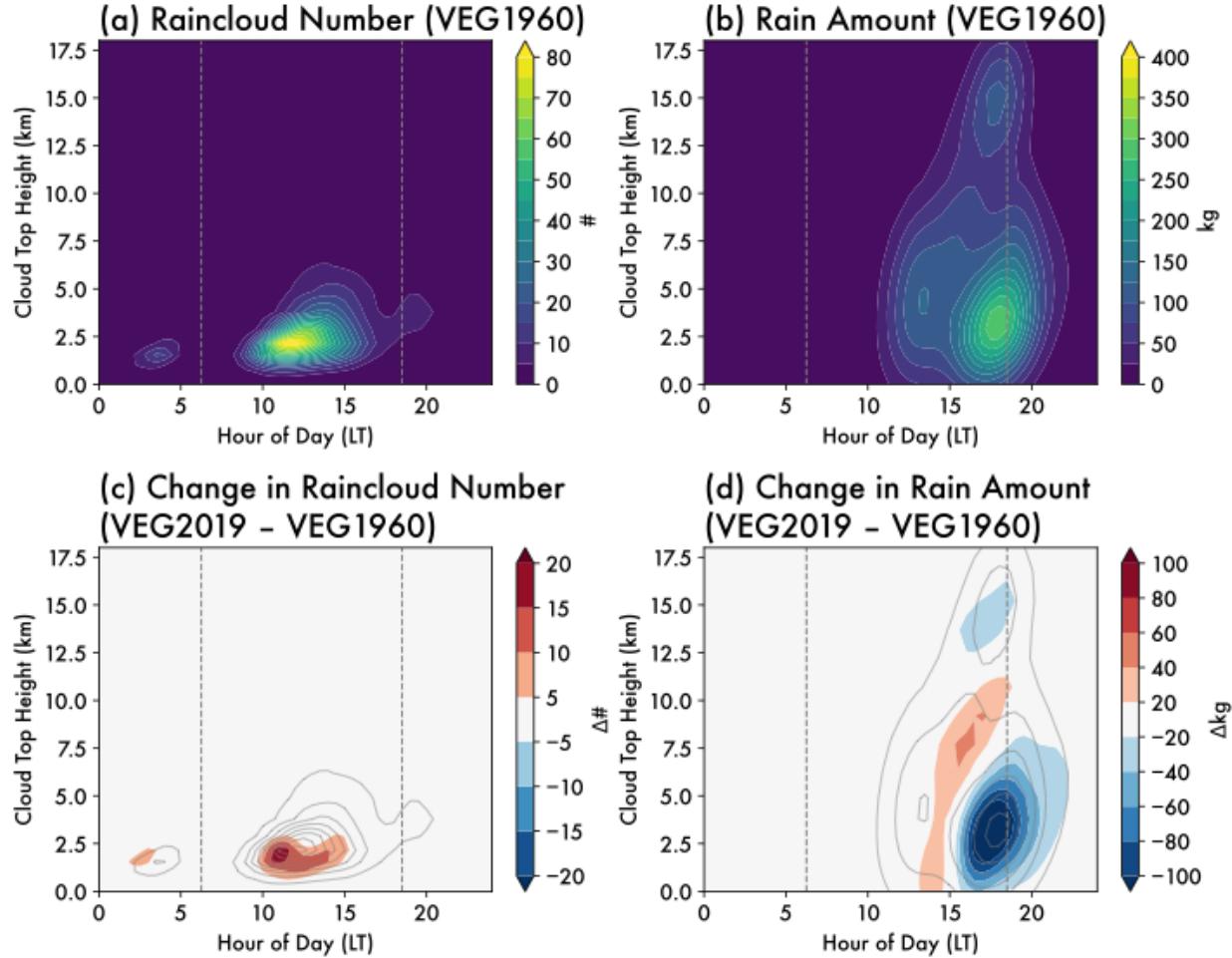
320 Across the domain, there is a reduction in deep convection following deforestation
321 (**Figure 5b,d**). In part, this follows from reduced shallow cumuli earlier in the day (**Section 4.1**).
322 Even once the decrease in midday shallow cumuli is accounted for, we still observe a further
323 decrease in the proportion of clouds that develop into deep convection after deforestation. Taking
324 the relative proportion of cloudy area between 4p.m. and 8p.m. (the peak of deep convective
325 activity), 10% more cloudy area in VEG2019 is associated with terminal congestus when
326 compared to VEG1960. These differences are due to differences in the large-scale moisture
327 convergence associated with changes in the sea breeze.

328 The SSTs in the simulations are nearly identical. However, there is a near-surface cooling
329 over land in VEG2019, which leads to a weakening of the sea breeze compared to VEG1960.
330 **Figure 9** shows the diurnal average of low-level moisture flux convergence (MFC; vertically
331 integrated from the surface to 1km a.s.l) as a function of distance from the coastline. The sea
332 breeze does not penetrate as far inland (~2km closer to the coastline) and generally fluxes less
333 moisture inland (maximum MFC is ~1 kg m⁻² hr⁻¹ lower) following deforestation. This is
334 consistent with past research on surface roughness and evapotranspiration impacts on sea breeze
335 strength and propagation (Gero & Pitman, 2006; Grant & van den Heever, 2014).


336 As a result of the reduced onshore moisture flux following deforestation, fewer deep
337 convective cells initiate in the late afternoon (**Figure 5d**) along the sea breeze front (black
338 contours; **Figure 9a,b**) in VEG2019 compared to VEG1960. Also, the development of the fewer
339 deep convective clouds in VEG2019 is shifted to later in the evening (**Figure 7c**).

340
341

Figure 9. Hovmöller plot showing sea breeze propagation and associated moisture flux convergence (MFC) and cloud cover for (a) VEG1960, (b) VEG2019, and (c) the difference between VEG2019 and VEG1960. Color shading in (a) and (b) shows integrated MFC (surface–1km a.g.l.), as a function of distance from the coastline and hour of the day. Black contours show a cloud fraction of 3% and 3.5%. Gray lines show the location of peak MFC for each time in VEG1960 (solid) and VEG2019 (dashed).


342 **5 Implications for precipitation**

343 The changes to convection across the diurnal cycle caused by widespread deforestation
 344 have substantial implications for precipitation at the surface. **Figure 10** shows changes in the
 345 diurnal cycle of clouds across the domain, as in **Figure 7**, but only for clouds with appreciable
 346 rainfall at the surface (rain rate $> 0.01 \text{ mm hr}^{-1}$). The area with positive changes (i.e., more
 347 raining clouds) is more evenly distributed across **Figure 10a** compared to **Figure 7a**. Although
 348 mesoscale circulations support increased convection along the deforestation boundary, the
 349 change in *raining* cumuli is more spatially uniform. This suggests the increase in shallow
 350 cumulus rainfall is driven by domain-wide changes in low-level moisture rather than lifting
 351 driven by surface heterogeneities, though these may still play a secondary role. Fewer active
 352 shallow cumuli form in VEG2019, but those which do have access to more near-surface moisture
 353 and trigger the onset of precipitation earlier in the day (**Figure 10b,c** and **Figure 11a,c**).
 354 Although these precipitating shallow cumuli comprise a small number and a limited integrated
 355 contribution to the overall water budget, these deforestation-driven changes happen during a time
 356 of day when little precipitation generally occurs. Thus, any shifts have a large relative
 357 contribution to when and where rainfall occurs (8% increase in raining area and 20% increase in
 358 rain amount from shallow cumuli between 9a.m.–3p.m.).

Figure 10. Spatial heterogeneity in raining cloud response to deforestation. As in **Figure 7**, but only for precipitating clouds (rain rate $> 0.01 \text{ mm hr}^{-1}$).

359 In contrast to the aforementioned changes in rainfall from shallow cumulus, we find that
 360 deforestation suppresses deep convection associated with sea breeze convergence, thereby
 361 leading to a decrease in the magnitude of the diurnal rainfall peak (**Figure 11d**). A majority of
 362 rainfall is driven by deep convection that forms after 3 p.m. (**Figure 11b**), and thus the net
 363 deforestation impact is a decrease in overall precipitation.
 364

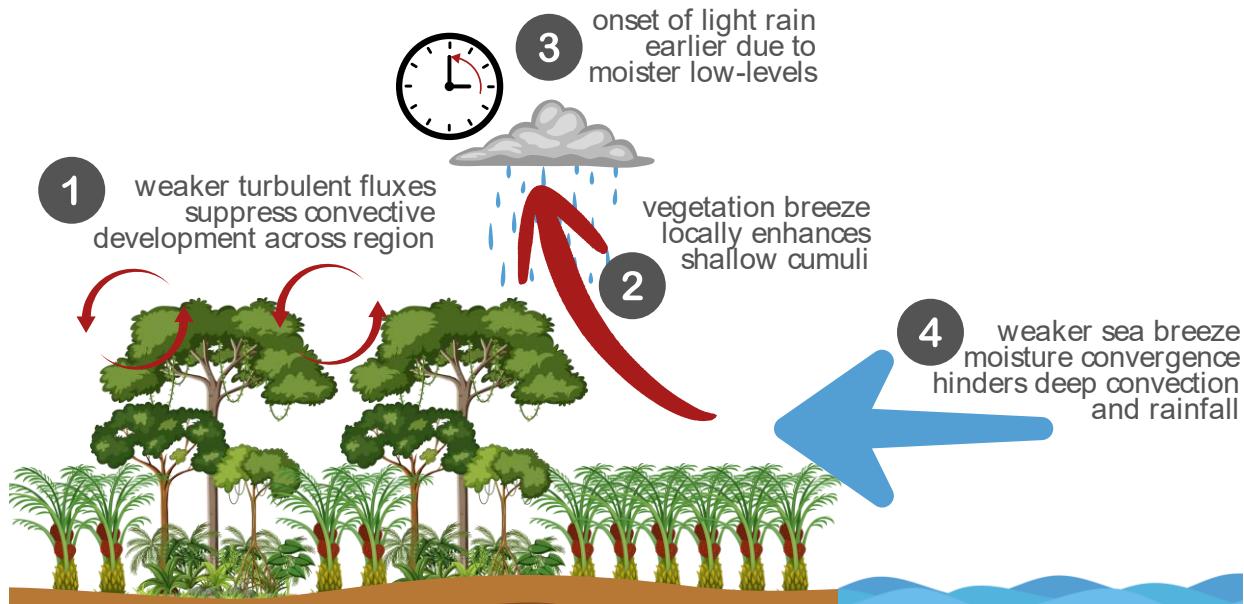


Figure 11. Diurnal cycle of (a) number of raining clouds and (b) total rain amount. As in **Figure 5**, but only for precipitating clouds (rain rate $>0.01 \text{ mm hr}^{-1}$). Total rain amount (b,d) is integrated over cloud area.

365 **6 Conclusions**

366 Accelerating deforestation in many regions of the world, including Southeast Asia,
 367 motivates an urgent need to understand what impact such land cover changes have on clouds and
 368 precipitation. Global and regional climate models disagree about the sign of deforestation-
 369 induced cloud feedbacks, which demonstrates a gap in our understanding of the convective and
 370 mesoscale processes involved. In this study, we use a set of high-resolution large eddy
 371 simulations with varied land cover but identical atmospheric initial and boundary conditions to

372 elucidate the mechanisms by which deforestation impacts clouds over Borneo. We focus on how
 373 land surface-convection interactions are influenced by changes to mean thermodynamics and
 374 mesoscale features like vegetation breezes and sea breezes. **Figure 12** illustrates the major
 375 processes governing these interactions.

Figure 12. Schematic of major processes impacting the cloud response to deforestation over Borneo. As intact tropical rainforest is replaced by palm oil plantations, turbulent exchanges between the land and atmosphere are reduced across the region, which suppresses convective development overall (1). However, along the border of deforested areas, vegetation breezes can locally enhance midday shallow cumuli (2). Due to the moister low-level atmosphere, shallow cumuli which do form after deforestation tend to rain earlier in the day (3). The large-scale changes to the near-surface atmosphere over land weaken moisture flux convergence by the sea breeze, which hinders the development of deep convection in the evening (4).

376 Overall, we find deforestation induces robust changes to the surface energy budget and
 377 thermodynamic responses in the near-surface atmosphere. The shift from rainforest to palm and
 378 rubber plantations reduces surface roughness and makes turbulent land-atmosphere exchanges
 379 less efficient. This leads to a decrease in sensible heat fluxes that is primarily compensated for by
 380 a warming of the ground and vegetation canopy. Unlike in other tropical forest regions, where
 381 the conversion of forest to pasture or bare soil decreases latent heat fluxes, we find that under
 382 these moisture-rich conditions deforestation enhances evapotranspiration due to warmer canopies
 383 and weaker evaporative resistance. This unique surface response is consistent with observations
 384 (Fowler et al., 2011; Giambelluca et al., 2016; Spracklen et al., 2018), but has typically been
 385 neglected in climate modeling studies for this region (Takahashi et al., 2017; Tölle et al., 2017;
 386 C.-C. Chen et al., 2019). These changes to the surface energy budget lead to a cooler and moister

387 near-surface atmosphere, and increases in convective inhibition following widespread
 388 deforestation, thereby changing the thermodynamic environment convection develops in.

389 Despite these clear energetic shifts, we find deforestation impacts on clouds are not
 390 homogeneous: changes to convection vary spatially and diurnally. Deforestation drives a
 391 decrease in late morning shallow cloudiness across the region via reduced sensible heat fluxes
 392 and enhanced convective inhibition. Yet we find shallow cloudiness is locally enhanced by
 393 vegetation breezes around areas with substantial forest loss. Local and regional deforestation
 394 impacts can therefore be in opposition. Quantifying the net deforestation impact on shallow
 395 clouds—which have strong radiative implications for climate (Gentine et al., 2019)—may
 396 depend on how extensive these vegetation-driven mesoscale circulations are, and thus on the
 397 spatial pattern of deforestation and the degree of land surface heterogeneity. Furthermore, we
 398 find that despite this region-wide suppression of shallow cumuli, the increased low-level
 399 moisture drives more of the shallow cumuli that do form to start raining earlier in the day. This
 400 leads to shifts in the diurnal timing and coverage of shallow precipitation, which motivates the
 401 need for further observational validation that disaggregates deforestation impacts on clouds and
 402 rainfall at different times of day (Leung et al., 2024; Ruijsch et al., 2025)

403 Deep convection is strongly impacted by deforestation-induced changes in large-scale
 404 moisture flux convergence. Deforestation dampens the land-ocean contrast in low-level
 405 temperatures, thereby weakening the sea breeze. This reduces moisture advection and limits
 406 development from shallow to deep convection, resulting in proportionally more clouds remaining
 407 as terminal congestus ($4\text{km} < \text{CTH} < 10\text{km}$) instead of developing into deep convection
 408 ($\text{CTH} > 10\text{km}$). The deep convection that does develop under the deforested scenario tends to now
 409 occur beyond sunset, with corresponding shifts in the diurnal precipitation maxima. Changes to
 410 diurnal timing may impact the net radiative effects of deep convective clouds and their anvils
 411 (Jones et al., 2024).

412 Compared to better-studied deforestation hotspots like the Amazon, the region of
 413 Southeast Asia we focus on here is unique both in terms of the prevailing land use (with the
 414 transition to oil palm and rubber plantations meaning evapotranspiration remains relatively high)
 415 and background meteorology (highly moist, with strong mesoscale influences on convection).
 416 We speculate the processes we discuss here are broadly applicable to other tropical deforestation
 417 regions with nearby moisture sources (e.g., Central America, coastal West Africa) (Kim et al.,
 418 2015; Taylor et al., 2022). That said, the *net* deforestation response is highly dependent on
 419 relative contributions from the local and regional processes we elucidate in this paper and thus
 420 may vary across regions and even seasons. For example, mesoscale breezes might become
 421 relatively more important compared to regional mean changes in boundary layer cloud
 422 development during the dry season (Leung et al., 2024). Deforestation impacts may further be
 423 modulated by other properties like aerosol emissions from forest clearing-related biomass
 424 burning (as visible in smoke in **Figure 1a,d**, but not included in our simulations). Such aerosol–
 425 land surface–cloud feedbacks have been shown to impact mesoscale circulations like the sea
 426 breeze (Grant and van den Heever 2014; Park and van den Heever 2022) and are the subject of a
 427 future set of planned investigations.

428 In conclusion, we demonstrate in this work that shallow and deep convection are
 429 coupled to the land surface through processes acting on different spatiotemporal scales. Shallow

430 convection is more sensitive to deforestation-induced regional changes in thermodynamics and
431 local changes in vegetation breezes, while deep convection is more sensitive to changes in
432 moisture convergence associated with the sea breeze. There are strong diurnal structures and
433 mesoscale heterogeneities in the signal of deforestation-driven changes in clouds and
434 precipitation. Though typically unresolved in large-scale models, our findings emphasize that
435 these convective and mesoscale processes must be carefully incorporated into assessments of the
436 impacts of land cover changes on clouds, hydrology, and climate.

437 **Acknowledgments**

438 Funding was provided by the NASA Early Career Research program through FINESST
439 80NSSC22K1446. SCvdH acknowledges funding from NSF ESCAPE 2019947 and DOE
440 TRACER DE-SC0021160. Computing resources supporting this work were provided by the
441 NASA High-End Computing (HEC) program through the NASA Advanced Supercomputing
442 (NAS) Division at Ames Research Center. We thank Dr. Aryeh Drager and Dr. Adele Igel for
443 helpful discussions around the surface and radiation parameterizations used.

444

445 **Open Research Section**

446 Source code to reproduce the RAMS simulations are available at:
447 <https://doi.org/10.5281/zenodo.17055884> (Leung & Van Den Heever, 2025). Analysis and
448 plotting code are available at: <https://doi.org/10.5281/zenodo.17122475>.

449 **References**

450 Argüeso, D., Romero, R., & Homar, V. (2020). Precipitation Features of the Maritime Continent in Parameterized
451 and Explicit Convection Models. <https://doi.org/10.1175/JCLI-D-19-0416.1>

452 Ascher, B. D., Saleeby, S. M., Marinescu, P. J., & Heever, S. C. van den. (2025). Forest Breeze–Cold Pool
453 Interactions Drive Convective Organization over Heterogeneous Vegetation. <https://doi.org/10.1175/JAS-D-24-0084.1>

455 Baidya Roy, S., & Avissar, R. (2002). Impact of land use/land cover change on regional hydrometeorology in
456 Amazonia. *Journal of Geophysical Research: Atmospheres*, 107(D20), LBA 4-1-LBA 4-12.
457 <https://doi.org/10.1029/2000JD000266>

458 Boysen, L. R., Brovkin, V., Pongratz, J., Lawrence, D. M., Lawrence, P., Vuichard, N., et al. (2020). Global climate
459 response to idealized deforestation in CMIP6 models. *Biogeosciences*, 17(22), 5615–5638.
460 <https://doi.org/10.5194/bg-17-5615-2020>

461 Chen, C.-C., Lo, M.-H., Im, E.-S., Yu, J.-Y., Liang, Y.-C., Chen, W.-T., et al. (2019). Thermodynamic and Dynamic
462 Responses to Deforestation in the Maritime Continent: A Modeling Study. *Journal of Climate*, 32(12),
463 3505–3527. <https://doi.org/10.1175/JCLI-D-18-0310.1>

464 Chen, H.-C., & Lo, M.-H. (2023). Contrasting Responses of Surface Heat Fluxes to Tropical Deforestation. *Journal
465 of Geophysical Research: Atmospheres*, 128(12), e2022JD038118. <https://doi.org/10.1029/2022JD038118>

466 Chen, J., Hagos, S., Xiao, H., Fast, J., & Feng, Z. (2023). Multiscale Analysis of Surface Heterogeneity–Induced
467 Convection on Isentropic Coordinates. <https://doi.org/10.1175/JAS-D-21-0198.1>

468 Chen, S., Woodcock, C., Dong, L., Tarrio, K., Mohammadi, D., & Olofsson, P. (2024). Review of drivers of forest
469 degradation and deforestation in Southeast Asia. *Remote Sensing Applications: Society and Environment*,
470 33, 101129. <https://doi.org/10.1016/j.rsase.2023.101129>

471 Cioni, G., & Hohenegger, C. (2017). Effect of Soil Moisture on Diurnal Convection and Precipitation in Large-Eddy
472 Simulations. *Journal of Hydrometeorology*, 18(7), 1885–1903. <https://doi.org/10.1175/JHM-D-16-0241.1>

473 Cotton, W. R., Pielke Sr., R. A., Walko, R. L., Liston, G. E., Tremback, C. J., Jiang, H., et al. (2003). RAMS 2001:
474 Current status and future directions. *Meteorology and Atmospheric Physics*, 82(1).
475 <https://doi.org/10.1007/s00703-001-0584-9>

476 Crompton, O., Corrêa, D., Duncan, J., & Thompson, S. (2021). Deforestation-induced surface warming is influenced
477 by the fragmentation and spatial extent of forest loss in Maritime Southeast Asia. *Environmental Research
478 Letters*, 16(11), 114018. <https://doi.org/10.1088/1748-9326/ac2fdc>

479 Davin, E. L., & de Noblet-Ducoudré, N. de. (2010). Climatic Impact of Global-Scale Deforestation: Radiative
480 versus Nonradiative Processes. *Journal of Climate*, 23(1), 97–112. <https://doi.org/10.1175/2009JCLI3102.1>

481 Drager, A. J., Grant, L. D., & Heever, S. C. van den. (2020). Cold Pool Responses to Changes in Soil Moisture.
482 *Journal of Advances in Modeling Earth Systems*, 12(8), e2019MS001922.
483 <https://doi.org/10.1029/2019MS001922>

484 Duveiller, G., Filippini, F., Ceglar, A., Bojanowski, J., Alkama, R., & Cescatti, A. (2021). Revealing the
485 widespread potential of forests to increase low level cloud cover. *Nature Communications*, 12(1), 4337.
486 <https://doi.org/10.1038/s41467-021-24551-5>

487 Falk, N. M., Leung, G. R., Grant, L. D., & Van Den Heever, S. C. (2025). Cold pools reduce the impacts of
488 deforestation on convective initiation.

489 FAO United Nations. (1974). Soil map of the world. Paris: Unesco.

490 Findell, K. L., & Eltahir, E. A. B. (2003). Atmospheric Controls on Soil Moisture–Boundary Layer Interactions. Part
491 I: Framework Development. *Journal of Hydrometeorology*, 4(3), 552–569. [https://doi.org/10.1175/1525-7541\(2003\)004%253C0552:ACOSML%253E2.0.CO;2](https://doi.org/10.1175/1525-7541(2003)004%253C0552:ACOSML%253E2.0.CO;2)

493 Fowler, D., Nemitz, E., Misztal, P., Di Marco, C., Skiba, U., Ryder, J., et al. (2011). Effects of land use on surface–
494 atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and
495 a rainforest. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 366(1582), 3196–
496 3209. <https://doi.org/10.1098/rstb.2011.0055>

497 Friedl, M. A., McIver, D. K., Hedges, J. C. F., Zhang, X. Y., Muchoney, D., Strahler, A. H., et al. (2002). Global
498 land cover mapping from MODIS: algorithms and early results. *Remote Sensing of Environment*, 83(1),
499 287–302. [https://doi.org/10.1016/S0034-4257\(02\)00078-0](https://doi.org/10.1016/S0034-4257(02)00078-0)

500 Gentine, P., Holtslag, A. A. M., D'Andrea, F., & Ek, M. (2013). Surface and Atmospheric Controls on the Onset of
501 Moist Convection over Land. *Journal of Hydrometeorology*, 14(5), 1443–1462.
502 <https://doi.org/10.1175/JHM-D-12-0137.1>

503 Gentine, P., Massmann, A., Lintner, B. R., Hamed Alejomahad, S., Fu, R., Green, J. K., et al. (2019). Land–
504 atmosphere interactions in the tropics – a review. *Hydrology and Earth System Sciences*, 23(10), 4171–
505 4197. <https://doi.org/10.5194/hess-23-4171-2019>

506 Gero, A. F., & Pitman, A. J. (2006). The Impact of Land Cover Change on a Simulated Storm Event in the Sydney
507 Basin. *Journal of Applied Meteorology and Climatology*, 45(2), 283–300.
508 <https://doi.org/10.1175/JAM2337.1>

509 Giambelluca, T. W., Mudd, R. G., Liu, W., Ziegler, A. D., Kobayashi, N., Kumagai, T., et al. (2016).
510 Evapotranspiration of rubber (*Hevea brasiliensis*) cultivated at two plantation sites in Southeast Asia. *Water
511 Resources Research*, 52(2), 660–679. <https://doi.org/10.1002/2015WR017755>

512 Grant, L. D., & van den Heever, S. C. (2014). Aerosol-cloud-land surface interactions within tropical sea breeze
513 convection. *Journal of Geophysical Research: Atmospheres*, 119(13), 8340–8361.
514 <https://doi.org/10.1002/2014JD021912>

515 Hardwick, S. R., Toumi, R., Pfeifer, M., Turner, E. C., Nilus, R., & Ewers, R. M. (2015). The relationship between
516 leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives
517 changes in microclimate. *Agricultural and Forest Meteorology*, 201, 187–195.
518 <https://doi.org/10.1016/j.agrformet.2014.11.010>

519 Heikenfeld, M., Marinescu, P. J., Christensen, M., Watson-Parris, D., Senf, F., van den Heever, S. C., & Stier, P.
520 (2019). tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets.
521 *Geoscientific Model Development*, 12(11), 4551–4570. <https://doi.org/10.5194/gmd-12-4551-2019>

522 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). The ERA5 global
523 reanalysis. *Quarterly Journal of the Royal Meteorological Society*, 146(730), 1999–2049.
524 <https://doi.org/10.1002/qj.3803>

525 Hill, G. E. (1974). Factors Controlling the Size and Spacing of Cumulus Clouds as Revealed by Numerical
526 Experiments. Retrieved from https://journals.ametsoc.org/view/journals/atsc/31/3/1520-0469_1974_031_0646_fctas_2_0_co_2.xml

527 Jamaludin, J., De Alban, J. D. T., Carrasco, L. R., & Webb, E. L. (2022). Spatiotemporal analysis of deforestation
528 patterns and drivers reveals emergent threats to tropical forest landscapes. *Environmental Research Letters*,
529 17(5), 054046. <https://doi.org/10.1088/1748-9326/ac68fa>

531 Johnson, R. H., Rickenbach, T. M., Rutledge, S. A., Ciesielski, P. E., & Schubert, W. H. (1999). Trimodal
532 Characteristics of Tropical Convection. *Journal of Climate*, 12, 22.

533 Jones, W. K., Stengel, M., & Stier, P. (2024). A Lagrangian perspective on the lifecycle and cloud radiative effect of
534 deep convective clouds over Africa. *Atmospheric Chemistry and Physics*, 24(9), 5165–5180.
535 <https://doi.org/10.5194/acp-24-5165-2024>

536 June, T., Meijide, A., Stiegler, C., Kusuma, A. P., & Knohl, A. (2018). The influence of surface roughness and
537 turbulence on heat fluxes from an oil palm plantation in Jambi, Indonesia. *IOP Conference Series: Earth
538 and Environmental Science*, 149(1), 012048. <https://doi.org/10.1088/1755-1315/149/1/012048>

539 Khanna, J., Medvigy, D., Fueglistaler, S., & Walko, R. (2017). Regional dry-season climate changes due to three
540 decades of Amazonian deforestation. *Nature Climate Change*, 7(3), 200–204.
541 <https://doi.org/10.1038/nclimate3226>

542 Kim, D.-H., Sexton, J. O., & Townshend, J. R. (2015). Accelerated deforestation in the humid tropics from the
543 1990s to the 2000s. *Geophysical Research Letters*, 42(9), 3495–3501.
544 <https://doi.org/10.1002/2014GL062777>

545 Laguë, M. M., Swann, A. L. S., & Boos, W. R. (2021). Radiative Feedbacks on Land Surface Change and
546 Associated Tropical Precipitation Shifts. *Journal of Climate*, 34(16), 6651–6672.
547 <https://doi.org/10.1175/JCLI-D-20-0883.1>

548 Leung, G. R., & van den Heever, S. C. (2022). Controls on the Development and Circulation of Terminal versus
549 Transient Congestus Clouds and Implications for Midlevel Aerosol Transport. *Journal of the Atmospheric
550 Sciences*, 79(11), 3083–3101. <https://doi.org/10.1175/JAS-D-21-0314.1>

551 Leung, G. R., & Van Den Heever, S. C. (2025, September 4). grleung/rams: RAMS Borneo LCC Simulations
552 (Version borneolcc-paper). Zenodo. Retrieved from <https://doi.org/10.5281/zenodo.17055884>

553 Leung, G. R., Grant, L. D., & van den Heever, S. C. (2024). Deforestation-Driven Increases in Shallow Clouds Are
554 Greatest in Drier, Low-Aerosol Regions of Southeast Asia. *Geophysical Research Letters*, 51(10),
555 e2023GL107678. <https://doi.org/10.1029/2023GL107678>

556 Lilly, D. K. (1962). On the numerical simulation of buoyant convection. *Tellus*, 14(2), 148–172.
557 <https://doi.org/10.1111/j.2153-3490.1962.tb00128.x>

558 Luo, Z., Liu, G. Y., Stephens, G. L., & Johnson, R. H. (2009). Terminal versus transient cumulus congestus: A
559 CloudSat perspective. *Geophysical Research Letters*, 36(5). <https://doi.org/10.1029/2008GL036927>

560 Mahmood, R., Pielke Sr., R. A., Hubbard, K. G., Niyogi, D., Dirmeyer, P. A., McAlpine, C., et al. (2014). Land
561 cover changes and their biogeophysical effects on climate. *International Journal of Climatology*, 34(4),
562 929–953. <https://doi.org/10.1002/joc.3736>

563 Marzuki, M., Yusnaini, H., Ramadhan, R., Tangang, F., Amirudin, A. A. B., Hashiguchi, H., et al. (2022).
564 Characteristics of Precipitation Diurnal Cycle over a Mountainous Area of Sumatra Island including MJO
565 and Seasonal Signatures Based on the 15-Year Optical Rain Gauge Data, WRF Model and IMERG.
566 *Atmosphere*, 13(1), 63. <https://doi.org/10.3390/atmos13010063>

567 Meyers, M. P., Walko, R. L., Harrington, J. Y., & Cotton, W. R. (1997). New RAMS cloud microphysics
568 parameterization. Part II: The two-moment scheme. *Atmospheric Research*, 45(1), 3–39.
569 [https://doi.org/10.1016/S0169-8095\(97\)00018-5](https://doi.org/10.1016/S0169-8095(97)00018-5)

570 van der Molen, M. K., Dolman, A., Waterloo, M., & Bruijnzeel, L. (2006). Climate is affected more by maritime
571 than by continental land use change: A multiple scale analysis. *Global and Planetary Change*, 54(1–2),
572 128–149. <https://doi.org/10.1016/j.gloplacha.2006.05.005>

573 Parker, D., Tosiani, A., Yazid, M., Sari, I. L., Kartika, T., Kustiyo, et al. (2024). Land in limbo: Nearly one third of
574 Indonesia's cleared old-growth forests left idle. *Proceedings of the National Academy of Sciences*, 121(28),
575 e2318029121. <https://doi.org/10.1073/pnas.2318029121>

576 Pielke Sr., R.A., Cotton, W. R., Walko, R. L., Tremback, C. J., Lyons, W. A., Grasso, L. D., et al. (1992). A
577 comprehensive meteorological modeling system—RAMS. *Meteorology and Atmospheric Physics*, 49(1),
578 69–91. <https://doi.org/10.1007/BF01025401>

579 Pielke Sr., Roger A. (2001). Influence of the spatial distribution of vegetation and soils on the prediction of cumulus
580 Convective rainfall. *Reviews of Geophysics*, 39(2), 151–177. <https://doi.org/10.1029/1999RG000072>

581 Pincus, R., Mlawer, E. J., & Delamere, J. S. (2019). Balancing Accuracy, Efficiency, and Flexibility in Radiation
582 Calculations for Dynamical Models. *Journal of Advances in Modeling Earth Systems*, 11(10), 3074–3089.
583 <https://doi.org/10.1029/2019MS001621>

584 Qian, J.-H. (2008). Why Precipitation Is Mostly Concentrated over Islands in the Maritime Continent. *Journal of the
585 Atmospheric Sciences*, 65(4), 1428–1441. <https://doi.org/10.1175/2007JAS2422.1>

586 Reid, J. S., Maring, H. B., Narisma, G. T., Heever, S. van den, Girolamo, L. D., Ferrare, R., et al. (2023). The
587 coupling between tropical meteorology, aerosol lifecycle, convection, and radiation, during the Cloud,
588 Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex). *Bulletin of the American*
589 *Meteorological Society*, 1(aop). <https://doi.org/10.1175/BAMS-D-21-0285.1>

590 Renggono, F., Hashiguchi, H., Fukao, S., Yamanaka, M. D., Ogino, S.-Y., Okamoto, N., et al. (2001). Precipitating
591 clouds observed by 1.3-GHz boundary layer radars in equatorial Indonesia. *Annales Geophysicae*, 19(8),
592 889–897. <https://doi.org/10.5194/angeo-19-889-2001>

593 Rieck, M., Hohenegger, C., & Heerwaarden, C. C. van. (2014). The Influence of Land Surface Heterogeneities on
594 Cloud Size Development. *Monthly Weather Review*, 142(10), 3830–3846. <https://doi.org/10.1175/MWR-D-13-00354.1>

595 Ruijsch, J., Taylor, C. M., Hutjes, R. W. A., & Teuling, A. J. (2025). Scale-dependent cloud enhancement from land
596 restoration in West African drylands. *Communications Earth & Environment*, 6(1), 1–11.
597 <https://doi.org/10.1038/s43247-025-02154-y>

598 Saad, S. I., Rocha, H. R. da, Dias, M. A. F. S., & Rosolem, R. (2010). Can the Deforestation Breeze Change the
599 Rainfall in Amazonia? A Case Study for the BR-163 Highway Region. *Earth Interactions*.
600 <https://doi.org/10.1175/2010EI351.1>

601 Sabajo, C. R., le Maire, G., June, T., Meijide, A., Roupsard, O., & Knohl, A. (2017). Expansion of oil palm and
602 other cash crops causes an increase of land surface temperature in Indonesia. *Biogeosciences*.
603 <https://doi.org/10.5194/bg-2017-203>

604 Saleeby, S. M., & Cotton, W. R. (2008). A Binned Approach to Cloud-Droplet Rimming Implemented in a Bulk
605 Microphysics Model. *Journal of Applied Meteorology and Climatology*, 47(2), 694–703.

606 Saleeby, S. M., & van den Heever, S. C. (2013). Developments in the CSU-RAMS Aerosol Model: Emissions,
607 Nucleation, Regeneration, Deposition, and Radiation. *Journal of Applied Meteorology and Climatology*,
608 52(12), 2601–2622. <https://doi.org/10.1175/JAMC-D-12-0312.1>

609 Santanello, J. A., Dirmeyer, P. A., Ferguson, C. R., Findell, K. L., Tawfik, A. B., Berg, A., et al. (2018). Land–
610 Atmosphere Interactions: The LoCo Perspective. *Bulletin of the American Meteorological Society*, 99(6),
611 1253–1272. <https://doi.org/10.1175/BAMS-D-17-0001.1>

612

613

614 Schneck, R., & Mosbrugger, V. (2011). Simulated climate effects of Southeast Asian deforestation: Regional
615 processes and teleconnection mechanisms. *Journal of Geophysical Research: Atmospheres*, 116(D11).
616 <https://doi.org/10.1029/2010JD015450>

617 Smagorinsky, J. (1963). General Circulation Experiments with the Primitive Equations. *Monthly Weather Review*.
618 [https://doi.org/10.1175/1520-0493\(1963\)091%3C0099:GCEWTP%3E2.3.CO;2](https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2)

619 Sokolowsky, G. A., Freeman, S. W., Jones, W. K., Kukulies, J., Senf, F., Marinescu, P. J., et al. (2024). *tobac* v1.5:
620 introducing fast 3D tracking, splits and mergers, and other enhancements for identifying and analysing
621 meteorological phenomena. *Geoscientific Model Development*, 17(13), 5309–5330.
622 <https://doi.org/10.5194/gmd-17-5309-2024>

623 Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L., & Marsham, J. H. (2018). The Effects of Tropical Vegetation
624 on Rainfall. *Annual Review of Environment and Resources*, 43(1), 193–218.
625 <https://doi.org/10.1146/annurev-environ-102017-030136>

626 Stull, R. B. (1988). Boundary Layer Clouds. In R. B. Stull (Ed.), *An Introduction to Boundary Layer Meteorology*
627 (pp. 545–585). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-009-3027-8_13

628 Takahashi, A., Kumagai, T., Kanamori, H., Fujinami, H., Hiyama, T., & Hara, M. (2017). Impact of Tropical
629 Deforestation and Forest Degradation on Precipitation over Borneo Island. *Journal of Hydrometeorology*,
630 18(11), 2907–2922. <https://doi.org/10.1175/JHM-D-17-0008.1>

631 Takanashi, S., Kosugi, Y., Ohkubo, S., Matsuo, N., Tani, M., & Nik, A. R. (2010). Water and heat fluxes above a
632 lowland dipterocarp forest in Peninsular Malaysia. *Hydrological Processes*, 24(4), 472–480.
633 <https://doi.org/10.1002/hyp.7499>

634 Tang, A. C. I., Stoy, P. C., Hirata, R., Musin, K. K., Aeries, E. B., Wenceslaus, J., et al. (2019). The exchange of
635 water and energy between a tropical peat forest and the atmosphere: Seasonal trends and comparison
636 against other tropical rainforests. *Science of The Total Environment*, 683, 166–174.
637 <https://doi.org/10.1016/j.scitotenv.2019.05.217>

638 Taylor, C. M., Klein, C., Parker, D. J., Gerard, F., Semeena, V. S., Barton, E. J., & Harris, B. L. (2022). “Late-stage”
639 deforestation enhances storm trends in coastal West Africa. *Proceedings of the National Academy of
640 Sciences*, 119(2), e2109285119. <https://doi.org/10.1073/pnas.2109285119>

641 Tölle, M. H., Engler, S., & Panitz, H.-J. (2017). Impact of Abrupt Land Cover Changes by Tropical Deforestation on
642 Southeast Asian Climate and Agriculture. *Journal of Climate*, 30(7), 2587–2600.
643 <https://doi.org/10.1175/JCLI-D-16-0131.1>

644 Walko, R. L., Band, L. E., Baron, J., Kittel, T. G. F., Lammers, R., Lee, T. J., et al. (2000). Coupled Atmosphere–
645 Biophysics–Hydrology Models for Environmental Modeling. *Journal of Applied Meteorology and*
646 *Climatology*, 39(6), 931–944. [https://doi.org/10.1175/1520-0450\(2000\)039%253C0931:CABHMF%253E2.0.CO;2](https://doi.org/10.1175/1520-0450(2000)039%253C0931:CABHMF%253E2.0.CO;2)

647 Werth, D., & Avissar, R. (2005). The local and global effects of Southeast Asian deforestation. *Geophysical*
648 *Research Letters*, 32(20). <https://doi.org/10.1029/2005GL022970>

649 Winkler, K., Fuchs, R., Rounsevell, M., & Herold, M. (2021). Global land use changes are four times greater than
650 previously estimated. *Nature Communications*, 12(1), 2501. <https://doi.org/10.1038/s41467-021-22702-2>

651 Xu, R., Li, Y., Teuling, A. J., Zhao, L., Spracklen, D. V., Garcia-Carreras, L., et al. (2022). Contrasting impacts of
652 forests on cloud cover based on satellite observations. *Nature Communications*, 13(1), 670.
653 <https://doi.org/10.1038/s41467-022-28161-7>

654 Yang, G.-Y., & Slingo, J. (2001). The Diurnal Cycle in the Tropics. *Monthly Weather Review*.
655 [https://doi.org/10.1175/1520-0493\(2001\)129%3C0784:TDCITT%3E2.0.CO;2](https://doi.org/10.1175/1520-0493(2001)129%3C0784:TDCITT%3E2.0.CO;2)

656

657